DCT-based Fast Spectral Convolution for Deep Convolutional Neural Networks

离散余弦变换 卷积(计算机科学) 核(代数) 卷积定理 快速傅里叶变换 卷积神经网络 计算机科学 算法 圆卷积 重叠-添加方法 人工智能 离散傅里叶变换(通用) 频域 数学 特征(语言学) 傅里叶变换 模式识别(心理学) 人工神经网络 分数阶傅立叶变换 计算机视觉 离散数学 图像(数学) 数学分析 傅里叶分析 哲学 语言学
作者
Yuhao Xu,Hideki Nakayama
标识
DOI:10.1109/ijcnn52387.2021.9534135
摘要

Spectral representations have been introduced into deep convolutional neural networks (CNNs) mainly for accelerating convolutions and mitigating information loss. However, repeated domain transformations and complex arithmetic of commonly-used Fourier transform (DFT, FFT) seriously limit the applicability of spectral networks. In contrast, discrete cosine transform (DCT)-based methods are more promising owing to computations with merely real numbers. Hence in this work, we investigate the convolution theorem of DCT and propose a faster spectral convolution method for CNNs. First, we transform the input feature map and convolutional kernel into the frequency domain via DCT. We then perform element-wise multiplication between the spectral feature map and kernel, which is mathematically equivalent to symmetric convolution in the spatial domain but much cheaper than the straightforward spatial convolution. Since DCT only involves real arithmetic, the computational complexity of our method is significantly smaller than the traditional FFT-based spectral convolution. Besides, we introduce a network optimization strategy to suppress repeated domain transformations leveraging the intrinsically extended kernels. Furthermore, we present a partial symmetry breaking strategy with spectral dropout to mitigate the performance degradation caused by kernel symmetry. Experimental results demonstrate that compared with traditional spatial and spectral methods, our proposed DCT-based spectral convolution effectively accelerates the networks while achieving comparable accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
圈圈圆了发布了新的文献求助10
2秒前
2秒前
5秒前
wfx发布了新的文献求助10
6秒前
Don驳回了脑洞疼应助
8秒前
大个应助hihi采纳,获得10
9秒前
10秒前
12秒前
曹喳喳发布了新的文献求助10
13秒前
14秒前
希望天下0贩的0应助mi采纳,获得30
15秒前
Ryuki完成签到,获得积分10
17秒前
17秒前
18秒前
18秒前
19秒前
19秒前
Lwj发布了新的文献求助10
23秒前
23秒前
planto发布了新的文献求助10
23秒前
调皮的海之完成签到,获得积分10
23秒前
nuonuomimi发布了新的文献求助10
24秒前
科研通AI5应助STAUDINGER采纳,获得10
24秒前
sandyleung发布了新的文献求助10
24秒前
25秒前
打打应助我是谁采纳,获得10
25秒前
26秒前
26秒前
Akim应助科研小民工采纳,获得10
27秒前
28秒前
ASBL发布了新的文献求助10
30秒前
英姑应助sandyleung采纳,获得10
30秒前
打打应助快乐的冰巧采纳,获得10
30秒前
弓仪长关注了科研通微信公众号
31秒前
KeYi发布了新的文献求助10
31秒前
32秒前
32秒前
34秒前
yaohuimin发布了新的文献求助30
35秒前
zwj完成签到,获得积分10
36秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3735903
求助须知:如何正确求助?哪些是违规求助? 3279592
关于积分的说明 10016324
捐赠科研通 2996292
什么是DOI,文献DOI怎么找? 1644012
邀请新用户注册赠送积分活动 781709
科研通“疑难数据库(出版商)”最低求助积分说明 749425