亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Deep Learning Approach to Segment and Classify C-Shaped Canal Morphologies in Mandibular Second Molars Using Cone-beam Computed Tomography

锥束ct 体素 分割 残余物 Sørensen–骰子系数 臼齿 事后 数学 医学 计算机科学 射线照相术 下颌管 核医学 计算机断层摄影术 口腔正畸科 人工智能 图像分割 放射科 算法
作者
Adithya A. Sherwood,Anand Sherwood,Frank C. Setzer,Sheela Devi K,Jasmin V. Shamili,Caroline John,Falk Schwendicke
出处
期刊:Journal of Endodontics [Elsevier]
卷期号:47 (12): 1907-1916 被引量:36
标识
DOI:10.1016/j.joen.2021.09.009
摘要

The identification of C-shaped root canal anatomy on radiographic images affects clinical decision making and treatment. The aims of this study were to develop a deep learning (DL) model to classify C-shaped canal anatomy in mandibular second molars from cone-beam computed tomographic (CBCT) volumes and to compare the performance of 3 different architectures.U-Net, residual U-Net, and Xception U-Net architectures were used for image segmentation and classification of C-shaped anatomies. Model training and validation were performed on 100 of a total of 135 available limited field of view CBCT images containing mandibular molars with C-shaped anatomy. Thirty-five CBCT images were used for testing. Voxel-matching accuracy of the automated labeling of the C-shaped anatomy was assessed with the Dice index. The mean sensitivity of predicting the correct C-shape subcategory was calculated based on detection accuracy. One-way analysis of variance and post hoc Tukey honestly significant difference tests were used for statistical evaluation.The mean Dice coefficients were 0.768 ± 0.0349 for Xception U-Net, 0.736 ± 0.0297 for residual U-Net, and 0.660 ± 0.0354 for U-Net on the test data set. The performance of the 3 models was significantly different overall (analysis of variance, P = .000779). Both Xception U-Net (Q = 7.23, P = .00070) and residual U-Net (Q = 5.09, P = .00951) performed significantly better than U-Net (post hoc Tukey honestly significant difference test). The mean sensitivity values were 0.786 ± 0.0378 for Xception U-Net, 0.746 ± 0.0391 for residual U-Net, and 0.720 ± 0.0495 for U-Net. The mean positive predictive values were 77.6% ± 0.1998% for U-Net, 78.2% ± 0.0.1971% for residual U-Net, and 80.0% ± 0.1098% for Xception U-Net. The addition of contrast-limited adaptive histogram equalization had improved overall architecture efficacy by a mean of 4.6% (P < .0001).DL may aid in the detection and classification of C-shaped canal anatomy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
eccentric发布了新的文献求助10
7秒前
13秒前
eccentric完成签到,获得积分10
14秒前
zhangxr发布了新的文献求助10
18秒前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
Sandy完成签到 ,获得积分10
1分钟前
兴尽晚回舟完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
啊强完成签到 ,获得积分10
2分钟前
无限毛豆发布了新的文献求助10
2分钟前
xiaolang2004完成签到,获得积分10
3分钟前
上官若男应助无限毛豆采纳,获得10
3分钟前
莉莉安完成签到 ,获得积分10
3分钟前
3分钟前
knoren发布了新的文献求助10
3分钟前
DeaR完成签到 ,获得积分10
3分钟前
knoren完成签到,获得积分10
4分钟前
4分钟前
止戈发布了新的文献求助10
4分钟前
5分钟前
小巫发布了新的文献求助10
5分钟前
科研菜狗完成签到 ,获得积分10
5分钟前
小马甲应助lbjcp3采纳,获得10
5分钟前
小巫完成签到,获得积分10
5分钟前
6分钟前
lbjcp3发布了新的文献求助10
6分钟前
脑洞疼应助zhangxr采纳,获得10
6分钟前
丘比特应助科研通管家采纳,获得10
7分钟前
乐乐应助科研通管家采纳,获得10
7分钟前
高高代珊完成签到 ,获得积分10
7分钟前
安输发布了新的文献求助10
7分钟前
hyl1115发布了新的文献求助30
7分钟前
安输完成签到,获得积分10
7分钟前
7分钟前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139548
求助须知:如何正确求助?哪些是违规求助? 2790430
关于积分的说明 7795269
捐赠科研通 2446905
什么是DOI,文献DOI怎么找? 1301487
科研通“疑难数据库(出版商)”最低求助积分说明 626238
版权声明 601146