A Deep Learning Approach to Segment and Classify C-Shaped Canal Morphologies in Mandibular Second Molars Using Cone-beam Computed Tomography

锥束ct 体素 分割 残余物 Sørensen–骰子系数 臼齿 事后 数学 医学 计算机科学 射线照相术 下颌管 核医学 计算机断层摄影术 口腔正畸科 人工智能 图像分割 放射科 算法
作者
Adithya A. Sherwood,I Sherwood,Frank Setzer,Sheela Devi K,Jasmin V. Shamili,Caroline John,Falk Schwendicke
出处
期刊:Journal of Endodontics [Elsevier BV]
卷期号:47 (12): 1907-1916 被引量:52
标识
DOI:10.1016/j.joen.2021.09.009
摘要

The identification of C-shaped root canal anatomy on radiographic images affects clinical decision making and treatment. The aims of this study were to develop a deep learning (DL) model to classify C-shaped canal anatomy in mandibular second molars from cone-beam computed tomographic (CBCT) volumes and to compare the performance of 3 different architectures.U-Net, residual U-Net, and Xception U-Net architectures were used for image segmentation and classification of C-shaped anatomies. Model training and validation were performed on 100 of a total of 135 available limited field of view CBCT images containing mandibular molars with C-shaped anatomy. Thirty-five CBCT images were used for testing. Voxel-matching accuracy of the automated labeling of the C-shaped anatomy was assessed with the Dice index. The mean sensitivity of predicting the correct C-shape subcategory was calculated based on detection accuracy. One-way analysis of variance and post hoc Tukey honestly significant difference tests were used for statistical evaluation.The mean Dice coefficients were 0.768 ± 0.0349 for Xception U-Net, 0.736 ± 0.0297 for residual U-Net, and 0.660 ± 0.0354 for U-Net on the test data set. The performance of the 3 models was significantly different overall (analysis of variance, P = .000779). Both Xception U-Net (Q = 7.23, P = .00070) and residual U-Net (Q = 5.09, P = .00951) performed significantly better than U-Net (post hoc Tukey honestly significant difference test). The mean sensitivity values were 0.786 ± 0.0378 for Xception U-Net, 0.746 ± 0.0391 for residual U-Net, and 0.720 ± 0.0495 for U-Net. The mean positive predictive values were 77.6% ± 0.1998% for U-Net, 78.2% ± 0.0.1971% for residual U-Net, and 80.0% ± 0.1098% for Xception U-Net. The addition of contrast-limited adaptive histogram equalization had improved overall architecture efficacy by a mean of 4.6% (P < .0001).DL may aid in the detection and classification of C-shaped canal anatomy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清爽的水蓝完成签到,获得积分10
1秒前
1秒前
2秒前
3秒前
hulibin1208发布了新的文献求助10
3秒前
3秒前
水濑心源完成签到,获得积分10
5秒前
裴帅龙发布了新的文献求助10
6秒前
yjj完成签到,获得积分10
6秒前
iwww完成签到 ,获得积分10
8秒前
9秒前
传奇3应助hulibin1208采纳,获得10
9秒前
Jasper应助裴帅龙采纳,获得10
10秒前
科研通AI5应助zzydada采纳,获得10
10秒前
丘比特应助小鱼僧采纳,获得10
11秒前
qianlicao发布了新的文献求助10
12秒前
12秒前
隋阳完成签到 ,获得积分10
13秒前
16秒前
读书酱完成签到 ,获得积分10
17秒前
17秒前
我是老大应助Chelry采纳,获得10
17秒前
昔年完成签到,获得积分10
20秒前
hulibin1208完成签到,获得积分10
20秒前
zhao完成签到,获得积分10
20秒前
嗯哼大王发布了新的文献求助10
21秒前
22秒前
小坤完成签到,获得积分10
23秒前
23秒前
甜甜的盼海完成签到,获得积分10
24秒前
Broccoli发布了新的文献求助20
25秒前
豪士赋完成签到,获得积分10
25秒前
26秒前
单匀霖发布了新的文献求助10
27秒前
tananna发布了新的文献求助10
27秒前
快乐非笑完成签到,获得积分10
28秒前
zhentg发布了新的文献求助10
29秒前
xixilulixiu完成签到 ,获得积分10
30秒前
wanci应助启点采纳,获得10
31秒前
憨憨完成签到 ,获得积分10
34秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3991847
求助须知:如何正确求助?哪些是违规求助? 3532997
关于积分的说明 11260291
捐赠科研通 3272252
什么是DOI,文献DOI怎么找? 1805688
邀请新用户注册赠送积分活动 882609
科研通“疑难数据库(出版商)”最低求助积分说明 809425