傅里叶变换红外光谱
主成分分析
偏最小二乘回归
高岭石
傅里叶变换
分析化学(期刊)
石英
傅里叶变换光谱学
红外线的
光谱学
矿物学
材料科学
化学
环境科学
数学
统计
环境化学
物理
光学
冶金
数学分析
量子力学
作者
Peter Stacey,Francis Clegg,Chris Sammon
标识
DOI:10.1093/annweh/wxab081
摘要
Exposure to respirable crystalline silica (RCS) is potentially hazardous to the health of thousands of workers in Great Britain. Both X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy can be used to measure RCS to assess exposures. The current method outlined in the Health and Safety Executive's (HSE) Methods for the Determination of Hazardous Substances (MDHS) guidance series is 'MDHS 101 Crystalline silica in respirable airborne dust - Direct-on-filter analyses by infrared spectroscopy or x-ray'. This describes a procedure for the determination of time-weighted average concentrations of RCS either as quartz or cristobalite in airborne dust. FTIR is more commonly employed because it is less expensive, potentially portable and relatively easy to use. However, the FTIR analysis of RCS is affected by spectral interference from silicates. Chemometric techniques, known as Partial Least Squares Regression (PLSR) and Principal Component Regression (PCR), are two computational processes that have the capability to remove spectral interference from FTIR spectra and correlate spectral features with constituent concentrations. These two common chemometric processes were tested on artificial mixtures of quartz and kaolinite in coal dust using the same commercially available software package. Calibration, validation and prediction samples were prepared by collecting aerosols of these dusts onto polyvinylchloride (PVC) filters using a Safety in Mines Personal Dust Sampler (SIMPEDS) respirable cyclone. PCR and PLSR analyses were compared when processing the same spectra. Good correlations between the target values, measured using XRD, were obtained for both the PCR and PLSR models e.g. 0.98-0.99 (quartz), 0.98-0.98 (kaolinite) and 0.96-0.97 (coal). The level of agreement between PCR and PLSR was within the 95% confidence value for each analyte. Slight differences observed between predicted PCR and PLSR values were due to the number of optimal principal components applied to each chemometric process. The presence of kaolinite in these samples caused an 18% overestimation of quartz, for the FTIR, when following MDHS 101 without a chemometric method. Chemometric methods are a useful approach to obtain interference-free results for the measurement of RCS from some workplace environments and to provide a multicomponent analysis to better characterise exposures of workers.
科研通智能强力驱动
Strongly Powered by AbleSci AI