Approach for short-term wind power prediction via kernel principal component analysis and echo state network optimized by improved particle swarm optimization algorithm

主成分分析 粒子群优化 风力发电 核主成分分析 核(代数) 计算机科学 回声状态网络 电力系统 数学优化 控制理论(社会学) 算法 人工神经网络 工程类 支持向量机 功率(物理) 人工智能 循环神经网络 数学 核方法 控制(管理) 物理 电气工程 组合数学 量子力学
作者
Zhongda Tian
出处
期刊:Transactions of the Institute of Measurement and Control [SAGE]
卷期号:43 (16): 3647-3662 被引量:8
标识
DOI:10.1177/01423312211046421
摘要

In recent years, short-term wind power forecasting has proved to be an effective technology, which can promote the development of industrial informatization and play an important role in solving the control and utilization problems of renewable energy system. However, the application of short-term wind power prediction needs to deal with a large number of data to avoid the instability of forecasting, which is facing more and more difficulties. In order to solve this problem, this paper proposes a novel prediction approach based on kernel principal component analysis and echo state network optimized by improved particle swarm optimization algorithm. Short-term wind power generation is affected by many factors. The original multi-dimensional input variables are pre-processed by kernel principal component analysis to determine the principal components that affect wind power. The dimension of principal component is less than the original input data, which reduces the complexity of modeling. The convergence and stability of the echo state network can be improved by using the principal component of the input variable. The advantage is to reduce the input variables, eliminate the correlation between the input variables, and improve the prediction performance of the prediction model. Furthermore, an improved particle swarm optimization algorithm is proposed to optimize the dynamic reservoir parameters of echo state network. Compared with other state-of-the-art prediction models, the case studies show that the proposed approach has good prediction performance for actual wind power data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
量子星尘发布了新的文献求助10
1秒前
1秒前
脑洞疼应助lunhui6453采纳,获得10
2秒前
小黄完成签到 ,获得积分10
4秒前
mochi发布了新的文献求助10
4秒前
TWOTP完成签到,获得积分10
4秒前
QDF发布了新的文献求助10
4秒前
丘比特应助在南方看北方采纳,获得10
4秒前
5秒前
5秒前
DryDry完成签到,获得积分10
7秒前
崔小乐给崔小乐的求助进行了留言
7秒前
7秒前
7秒前
别理我完成签到,获得积分20
8秒前
暮霭沉沉应助鱿鱼采纳,获得50
8秒前
Kelly完成签到,获得积分10
8秒前
yuon完成签到,获得积分10
8秒前
9秒前
9秒前
伞下铭发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
欣xin完成签到,获得积分20
12秒前
螃蟹完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
13秒前
@@@发布了新的文献求助10
13秒前
撒旦撒完成签到,获得积分10
13秒前
13秒前
打打应助江林林采纳,获得10
14秒前
14秒前
vicky完成签到 ,获得积分10
14秒前
搜集达人应助dd采纳,获得10
14秒前
HWX完成签到,获得积分10
15秒前
15秒前
miselling完成签到,获得积分10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5666801
求助须知:如何正确求助?哪些是违规求助? 4883139
关于积分的说明 15118110
捐赠科研通 4825764
什么是DOI,文献DOI怎么找? 2583569
邀请新用户注册赠送积分活动 1537746
关于科研通互助平台的介绍 1495952