超调(微波通信)
控制理论(社会学)
控制器(灌溉)
计算机科学
梯度下降
补偿(心理学)
阻抗控制
电阻抗
跟踪误差
跟踪(教育)
人工神经网络
控制工程
控制(管理)
工程类
机器人
人工智能
电气工程
农学
生物
电信
教育学
心理学
精神分析
作者
Xingbo Wang,Yan Zhang,Chuang Lu
标识
DOI:10.23919/ccc52363.2021.9549782
摘要
When the environment information cannot be accurately obtained, large force tracking error and overshoot may exist if traditional constant impedance control is adopted. To solve this problem, a new adaptive impedance controller is designed by combining the compensation and the optimization. In order to track the desired force, the environment location is estimated and the estimation error is compensated. The gradient descent method is used to calculate the impedance variation to reduce the force overshoot, and the Radial Basis Function Neural Network (RBFNN) is introduced to improve the position tracking performance. The effectiveness of the proposed controller is verified by simulations in multiple uncertain environments.
科研通智能强力驱动
Strongly Powered by AbleSci AI