Persistent homology of tumor CT scans is associated with survival in lung cancer

持久同源性 霍恩斯菲尔德秤 拓扑数据分析 医学 肺癌 放射基因组学 比例危险模型 生存分析 核医学 拓扑(电路) 无线电技术 数学 放射科 人工智能 计算机断层摄影术 算法 计算机科学 病理 组合数学 内科学
作者
Eashwar Somasundaram,Adam Litzler,Raoul Wadhwa,Rowan Barker‐Clarke,Jacob G. Scott
出处
期刊:Medical Physics [Wiley]
卷期号:48 (11): 7043-7051 被引量:12
标识
DOI:10.1002/mp.15255
摘要

Abstract Purpose Radiomics, the objective study of nonvisual features in clinical imaging, has been useful in informing decisions in clinical oncology. However, radiomics currently lacks the ability to characterize the overall topological structure of the data. This niche can be filled by persistent homology, a form of topological data analysis that analyzes high‐level structure. We hypothesized that persistent homology features quantified using cubical complexes could be extracted from lung tumor scans and related to survival. Methods We obtained segmented computed tomography (CT) lung scans ( n = 565) from the NSCLC‐Radiomics and NSCLC‐Radiogenomics datasets in The Cancer Imaging Archive. These scans are three‐dimensional images whose pixel intensity corresponds to a number of Hounsfield units. Cubical complexes are a topological image analysis method that effectively analyzes the number of topological features in an image as the image is thresholded at different intensities. We calculated a novel output called a feature curve by plotting the number of zero‐dimensional (0D) topological features counted from the cubical complex filtration against each Hounsfield value. This curve's first moment of distribution was utilized as a summary statistic to show association with survival in a Cox proportional hazards model. We hypothesized that persistent homology features quantified using cubical complexes could be extracted from lung tumor scans and related to survival. Results After controlling for tumor image size, age, and stage, the first moment of the 0D topological feature curve was associated with poorer survival (HR = 1.118; 95% CI = 1.026–1.218; p = 0.01). The patients in our study with the lowest first moment scores had significantly better survival (1238 days; 95% CI = 936–1599) compared to the patients with the highest first moment scores (429 days; 95% CI = 326–601; p = 0.0015). Conclusions We have shown that persistent homology can generate useful clinical correlates from tumor CT scans. Our 0D topological feature curve statistic predicts survival in lung cancer patients. This novel statistic may be used in tandem with standard radiomics variables to better inform clinical oncology decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
摆烂小子发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
简单海露发布了新的文献求助30
2秒前
OK发布了新的文献求助10
2秒前
OK发布了新的文献求助10
2秒前
OK发布了新的文献求助10
2秒前
OK发布了新的文献求助10
3秒前
OK发布了新的文献求助30
3秒前
OK发布了新的文献求助10
3秒前
OK发布了新的文献求助10
3秒前
OK发布了新的文献求助10
3秒前
77发布了新的文献求助10
3秒前
3秒前
咔兹咔兹完成签到,获得积分10
4秒前
OK发布了新的文献求助10
4秒前
OK发布了新的文献求助10
4秒前
OK发布了新的文献求助10
4秒前
OK发布了新的文献求助10
4秒前
OK发布了新的文献求助10
4秒前
OK发布了新的文献求助10
4秒前
OK发布了新的文献求助10
4秒前
OK发布了新的文献求助10
4秒前
OK发布了新的文献求助10
4秒前
OK发布了新的文献求助10
4秒前
OK发布了新的文献求助10
4秒前
OK发布了新的文献求助10
4秒前
OK发布了新的文献求助10
4秒前
OK发布了新的文献求助10
4秒前
5秒前
zzjjhh完成签到,获得积分10
6秒前
Jack发布了新的文献求助30
6秒前
猪猪侠完成签到,获得积分10
7秒前
科研通AI5应助cruise采纳,获得10
7秒前
8秒前
TT发布了新的文献求助10
8秒前
8秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3488637
求助须知:如何正确求助?哪些是违规求助? 3076232
关于积分的说明 9144270
捐赠科研通 2768577
什么是DOI,文献DOI怎么找? 1519188
邀请新用户注册赠送积分活动 703703
科研通“疑难数据库(出版商)”最低求助积分说明 701952