Hyperspectral and Multispectral Image Fusion Using Factor Smoothed Tensor Ring Decomposition

多光谱图像 高光谱成像 计算机科学 图像分辨率 人工智能 图像融合 矩阵分解 分解 算法 张量(固有定义) 正规化(语言学) 模式识别(心理学) 数学 图像(数学) 物理 特征向量 生物 量子力学 纯数学 生态学
作者
Yong Chen,Zongben Xu,Wei He,Xi-Le Zhao,Ting‐Zhu Huang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-17 被引量:33
标识
DOI:10.1109/tgrs.2021.3114197
摘要

Fusing a pair of low-spatial-resolution hyperspectral image (LR-HSI) and high-spatial-resolution multispectral image (HR-MSI) has been regarded as an effective and economical strategy to achieve HR-HSI, which is essential to many applications. Among existing fusion models, the tensor ring (TR) decomposition-based model has attracted rising attention due to its superiority in approximating high-dimensional data compared to other traditional matrix/tensor decomposition models. Unlike directly estimating HR-HSI in traditional models, the TR fusion model translates the fusion procedure into an estimate of the TR factor of HR-HSI, which can efficiently capture the spatial–spectral correlation of HR-HSI. Although the spatial–spectral correlation has been preserved well by TR decomposition, the spatial–spectral continuity of HR-HSI is ignored in existing TR decomposition models, sometimes resulting in poor quality of reconstructed images. In this article, we introduce a factor smoothed regularization for TR decomposition to capture the spatial–spectral continuity of HR-HSI. As a result, our proposed model is called factor smoothed TR decomposition model, dubbed FSTRD . In order to solve the suggested model, we develop an efficient proximal alternating minimization algorithm. A series of experiments on four synthetic datasets and one real-world dataset show that the quality of reconstructed images can be significantly improved by the introduced factor smoothed regularization, and thus, the suggested method yields the best performance by comparing it to state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
john完成签到,获得积分10
1秒前
Earnestlee完成签到,获得积分10
1秒前
天天快乐应助PROTAC采纳,获得10
1秒前
zr完成签到,获得积分10
1秒前
2秒前
晓沫发布了新的文献求助10
2秒前
MWSURE完成签到,获得积分10
3秒前
4秒前
Akim应助cloverdown采纳,获得10
4秒前
zhan完成签到,获得积分10
4秒前
伶俐皮卡丘完成签到,获得积分10
5秒前
崔鹤然完成签到,获得积分10
5秒前
噫嘘玺完成签到,获得积分10
5秒前
gaohar完成签到,获得积分10
5秒前
乐意你发布了新的文献求助10
6秒前
天天快乐应助亚琳采纳,获得10
7秒前
sweat完成签到,获得积分10
7秒前
8秒前
源源源完成签到 ,获得积分10
9秒前
oleskarabach发布了新的文献求助10
9秒前
夜半发布了新的文献求助10
9秒前
哥哥完成签到,获得积分10
9秒前
Sean完成签到 ,获得积分10
10秒前
叮叮叮完成签到 ,获得积分10
10秒前
大白牛完成签到,获得积分10
10秒前
陈功完成签到,获得积分10
11秒前
成就绮琴完成签到 ,获得积分10
12秒前
deniroming完成签到,获得积分10
13秒前
CDX发布了新的文献求助10
13秒前
Crisp完成签到,获得积分10
13秒前
xzn1123应助默默飞珍采纳,获得10
14秒前
芥末奶半糖加冰完成签到,获得积分10
14秒前
Maestro_S完成签到,获得积分0
14秒前
量子星尘发布了新的文献求助10
14秒前
15秒前
舒心莫言完成签到,获得积分10
15秒前
忧郁紫翠发布了新的文献求助30
15秒前
自然紫山完成签到,获得积分10
17秒前
17秒前
cp3xzh完成签到,获得积分10
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957219
求助须知:如何正确求助?哪些是违规求助? 3503261
关于积分的说明 11112080
捐赠科研通 3234372
什么是DOI,文献DOI怎么找? 1787895
邀请新用户注册赠送积分活动 870817
科研通“疑难数据库(出版商)”最低求助积分说明 802330