催化作用
化学
部分
水溶液
反应速率常数
纳米颗粒
环境修复
氧化还原
污染物
光化学
无机化学
组合化学
纳米技术
污染
动力学
有机化学
材料科学
物理
生物
量子力学
生态学
作者
Yaowen Gao,Yue Zhu,Tong Li,Zhenhuan Chen,Qike Jiang,Zhiyu Zhao,Xiaoying Liang,Chun Hu
标识
DOI:10.1021/acs.est.1c01131
摘要
Single-atom catalysts (SACs) have emerged as efficient materials in the elimination of aqueous organic contaminants; however, the origin of high activity of SACs still remains elusive. Herein, we identify an 8.1-fold catalytic specific activity (reaction rate constant normalized to catalyst’s specific surface area and dosage) enhancement that can be fulfilled with a single-atom iron catalyst (SA-Fe-NC) prepared via a cascade anchoring method compared to the iron nanoparticle-loaded catalyst, resulting in one of the most active currently known catalysts in peroxymonosulfate (PMS) conversion for organic pollutant oxidation. Experimental data and theoretical results unraveled that the high-activity origin of the SA-Fe-NC stems from the Fe–pyridinic N4 moiety, which dramatically increases active sites by not only creating the electron-rich Fe single atom as the catalytic site but also producing electron-poor carbon atoms neighboring pyridinic N as binding sites for PMS activation including synchronous PMS reduction and oxidation together with dissolved oxygen reduction. Moreover, the SA-Fe-NC exhibits excellent stability and applicability to realistic industrial wastewater remediation. This work offers a novel yet reasonable interpretation for why a small amount of iron in the SA-Fe-NC can deliver extremely superior specific activity in PMS activation and develops a promising catalytic oxidation system toward actual environmental cleanup.
科研通智能强力驱动
Strongly Powered by AbleSci AI