Digital twin-driven framework for improving self-management of ergonomic risks

计算机科学 劳动力 人机交互 可穿戴计算机 知识管理 模拟 经济增长 嵌入式系统 经济
作者
Omobolanle Ogunseiju,Johnson Olayiwola,Abiola Akanmu,Chukwuma Nnaji
出处
期刊:Smart and sustainable built environment [Emerald (MCB UP)]
卷期号:10 (3): 403-419 被引量:38
标识
DOI:10.1108/sasbe-03-2021-0035
摘要

Purpose The physically-demanding and repetitive nature of construction work often exposes workers to work-related musculoskeletal injuries. Real-time information about the ergonomic consequences of workers' postures can enhance their ability to control or self-manage their exposures. This study proposes a digital twin framework to improve self-management ergonomic exposures through bi-directional mapping between workers' postures and their corresponding virtual replica. Design/methodology/approach The viability of the proposed approach was demonstrated by implementing the digital twin framework on a simulated floor-framing task. The proposed framework uses wearable sensors to track the kinematics of workers' body segments and communicates the ergonomic risks via an augmented virtual replica within the worker's field of view. Sequence-to-sequence long short-term memory (LSTM) network is employed to adapt the virtual feedback to workers' performance. Findings Results show promise for reducing ergonomic risks of the construction workforce through improved awareness. The experimental study demonstrates feasibility of the proposed approach for reducing overexertion of the trunk. Performance of the LSTM network improved when trained with augmented data but at a high computational cost. Research limitations/implications Suggested actionable feedback is currently based on actual work postures. The study is experimental and will need to be scaled up prior to field deployment. Originality/value This study reveals the potentials of digital twins for personalized posture training and sets precedence for further investigations into opportunities offered by digital twins for improving health and wellbeing of the construction workforce.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助1988采纳,获得10
刚刚
打打应助星星之火采纳,获得10
刚刚
1秒前
思源应助WERTUYU采纳,获得10
1秒前
1秒前
dyyyy完成签到,获得积分20
3秒前
3秒前
3秒前
6秒前
小福发布了新的文献求助10
6秒前
落后大碗完成签到,获得积分10
7秒前
酷波er应助Cris采纳,获得10
8秒前
小写完成签到,获得积分10
9秒前
nn完成签到 ,获得积分10
9秒前
小马甲应助哈哈哈哈哈采纳,获得10
10秒前
10秒前
11秒前
耍酷芙蓉发布了新的文献求助10
12秒前
13秒前
13秒前
个性浩然完成签到,获得积分10
14秒前
雪中发布了新的文献求助10
16秒前
汉堡包应助Green采纳,获得10
16秒前
良辰应助luoribai采纳,获得50
17秒前
theday完成签到,获得积分10
18秒前
19秒前
个性浩然发布了新的文献求助10
19秒前
嘻嘻不嘻嘻关注了科研通微信公众号
19秒前
情怀应助无奈傲菡采纳,获得10
20秒前
flytime1115完成签到,获得积分10
20秒前
WERTUYU发布了新的文献求助10
21秒前
21秒前
21秒前
真的在改了完成签到,获得积分10
23秒前
24秒前
25秒前
26秒前
26秒前
简单夏之发布了新的文献求助30
26秒前
27秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157866
求助须知:如何正确求助?哪些是违规求助? 2809202
关于积分的说明 7880857
捐赠科研通 2467704
什么是DOI,文献DOI怎么找? 1313664
科研通“疑难数据库(出版商)”最低求助积分说明 630476
版权声明 601943