Concealed Object Detection

计算机科学 目标检测 分割 人工智能 任务(项目管理) 计算机视觉 对象(语法) 鉴定(生物学) 领域(数学) 视觉对象识别的认知神经科学 情报检索 生物 植物 经济 管理 纯数学 数学
作者
Deng-Ping Fan,Ge-Peng Ji,Ming‐Ming Cheng,Ling Shao
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:44 (10): 6024-6042 被引量:303
标识
DOI:10.1109/tpami.2021.3085766
摘要

We present the first systematic study on concealed object detection (COD), which aims to identify objects that are visually embedded in their background. The high intrinsic similarities between the concealed objects and their background make COD far more challenging than traditional object detection/segmentation. To better understand this task, we collect a large-scale dataset, called COD10K, which consists of 10,000 images covering concealed objects in diverse real-world scenarios from 78 object categories. Further, we provide rich annotations including object categories, object boundaries, challenging attributes, object-level labels, and instance-level annotations. Our COD10K is the largest COD dataset to date, with the richest annotations, which enables comprehensive concealed object understanding and can even be used to help progress several other vision tasks, such as detection, segmentation, classification etc. Motivated by how animals hunt in the wild, we also design a simple but strong baseline for COD, termed the Search Identification Network (SINet). Without any bells and whistles, SINet outperforms twelve cutting-edge baselines on all datasets tested, making them robust, general architectures that could serve as catalysts for future research in COD. Finally, we provide some interesting findings, and highlight several potential applications and future directions. To spark research in this new field, our code, dataset, and online demo are available at our project page: http://mmcheng.net/cod.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SaSa发布了新的文献求助10
刚刚
椒盐丸子发布了新的文献求助10
2秒前
2秒前
思源应助张莹采纳,获得10
3秒前
4秒前
Kenzonvay发布了新的文献求助10
4秒前
Akim应助冷艳的咖啡采纳,获得10
5秒前
5秒前
可爱多完成签到,获得积分20
6秒前
我是老大应助初心采纳,获得10
6秒前
笨笨米卡完成签到,获得积分10
7秒前
标致鞋垫完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
8秒前
余悲也白发布了新的文献求助10
9秒前
万能图书馆应助圆圈采纳,获得10
11秒前
11秒前
吴梅应助zzy采纳,获得10
12秒前
13秒前
13秒前
齐齐发布了新的文献求助10
13秒前
14秒前
莫若以明完成签到,获得积分10
14秒前
14秒前
扎心应助可夫司机采纳,获得10
16秒前
16秒前
16秒前
Jiao H.P完成签到,获得积分10
16秒前
16秒前
顺心冬易完成签到,获得积分10
17秒前
彭于晏完成签到,获得积分10
17秒前
sx发布了新的文献求助10
17秒前
XSY发布了新的文献求助10
17秒前
磕盐耇发布了新的文献求助10
18秒前
斯文败类应助灰光呀采纳,获得10
18秒前
wanci应助余悲也白采纳,获得10
18秒前
19秒前
19秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3152811
求助须知:如何正确求助?哪些是违规求助? 2804001
关于积分的说明 7856700
捐赠科研通 2461757
什么是DOI,文献DOI怎么找? 1310484
科研通“疑难数据库(出版商)”最低求助积分说明 629243
版权声明 601782