Misinformation detection using multitask learning with mutual learning for novelty detection and emotion recognition

误传 新颖性 人工智能 计算机科学 认知心理学 惊喜 新知识检测 社会化媒体 欺骗 心理学 社会心理学 计算机安全 万维网
作者
Rina Kumari,Nischal Ashok,Tirthankar Ghosal,Asif Ekbal
出处
期刊:Information Processing and Management [Elsevier]
卷期号:58 (5): 102631-102631 被引量:53
标识
DOI:10.1016/j.ipm.2021.102631
摘要

Fake news or misinformation is the information or stories intentionally created to deceive or mislead the readers. Nowadays, social media platforms have become the ripe grounds for misinformation, spreading them in a few minutes, which led to chaos, panic, and potential health hazards among people. The rapid dissemination and a prolific rise in the spread of fake news and misinformation create the most time-critical challenges for the Natural Language Processing (NLP) community. Relevant literature reveals that the presence of an element of surprise in the story is a strong driving force for the rapid dissemination of misinformation, which attracts immediate attention and invokes strong emotional stimulus in the reader. False stories or fake information are written to arouse interest and activate the emotions of people to spread it. Thus, false stories have a higher level of novelty and emotional content than true stories. Hence, Novelty of the news item and recognizing the Emotional state of the reader after reading the item seems two key tasks to tightly couple with misinformation Detection. Previous literature did not explore misinformation detection with mutual learning for novelty detection and emotion recognition to the best of our knowledge. Our current work argues that joint learning of novelty and emotion from the target text makes a strong case for misinformation detection. In this paper, we propose a deep multitask learning framework that jointly performs novelty detection, emotion recognition, and misinformation detection. Our deep multitask model achieves state-of-the-art (SOTA) performance for fake news detection on four benchmark datasets, viz. ByteDance, FNC, Covid-Stance and FNID with 7.73%, 3.69%, 7.95% and 13.38% accuracy gain, respectively. The evaluation shows that our multitask learning framework improves the performance over the single-task framework for four datasets with 7.8%, 28.62%, 11.46%, and 15.66% overall accuracy gain. We claim that textual novelty and emotion are the two key aspects to consider while developing an automatic fake news detection mechanism. The source code is available at https://github.com/Nish-19/Misinformation-Multitask-Attention-NE.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助空城旧梦采纳,获得10
1秒前
1秒前
1秒前
FashionBoy应助DYZ采纳,获得10
1秒前
1秒前
科研好累哦完成签到,获得积分10
1秒前
852应助77不88采纳,获得10
2秒前
2秒前
大力的乐曲完成签到,获得积分10
2秒前
罗备完成签到,获得积分10
3秒前
tooty完成签到,获得积分10
4秒前
dake完成签到,获得积分10
4秒前
Lin发布了新的文献求助10
4秒前
4秒前
Micheallee完成签到,获得积分10
5秒前
卢西完成签到,获得积分10
5秒前
5秒前
wzz发布了新的文献求助10
6秒前
摇落月完成签到,获得积分10
7秒前
科研通AI6应助yangyj采纳,获得10
10秒前
10秒前
10秒前
明亮梦山完成签到 ,获得积分10
11秒前
wdw2501完成签到,获得积分10
11秒前
12秒前
一一完成签到,获得积分10
12秒前
13秒前
DYZ发布了新的文献求助10
13秒前
14秒前
jjh完成签到,获得积分10
15秒前
SciGPT应助超级寒凝采纳,获得10
15秒前
15秒前
16秒前
outlast完成签到,获得积分10
16秒前
17秒前
忐忑的龙猫完成签到 ,获得积分10
17秒前
Harry应助科研好累哦采纳,获得10
17秒前
宗忻发布了新的文献求助10
17秒前
顺利的绿海完成签到 ,获得积分10
17秒前
研友_Zr5MRn关注了科研通微信公众号
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5539728
求助须知:如何正确求助?哪些是违规求助? 4626494
关于积分的说明 14599495
捐赠科研通 4567353
什么是DOI,文献DOI怎么找? 2504016
邀请新用户注册赠送积分活动 1481719
关于科研通互助平台的介绍 1453352