Misinformation detection using multitask learning with mutual learning for novelty detection and emotion recognition

误传 新颖性 人工智能 计算机科学 认知心理学 惊喜 新知识检测 社会化媒体 欺骗 心理学 社会心理学 计算机安全 万维网
作者
Rina Kumari,Nischal Ashok,Tirthankar Ghosal,Asif Ekbal
出处
期刊:Information Processing and Management [Elsevier BV]
卷期号:58 (5): 102631-102631 被引量:53
标识
DOI:10.1016/j.ipm.2021.102631
摘要

Fake news or misinformation is the information or stories intentionally created to deceive or mislead the readers. Nowadays, social media platforms have become the ripe grounds for misinformation, spreading them in a few minutes, which led to chaos, panic, and potential health hazards among people. The rapid dissemination and a prolific rise in the spread of fake news and misinformation create the most time-critical challenges for the Natural Language Processing (NLP) community. Relevant literature reveals that the presence of an element of surprise in the story is a strong driving force for the rapid dissemination of misinformation, which attracts immediate attention and invokes strong emotional stimulus in the reader. False stories or fake information are written to arouse interest and activate the emotions of people to spread it. Thus, false stories have a higher level of novelty and emotional content than true stories. Hence, Novelty of the news item and recognizing the Emotional state of the reader after reading the item seems two key tasks to tightly couple with misinformation Detection. Previous literature did not explore misinformation detection with mutual learning for novelty detection and emotion recognition to the best of our knowledge. Our current work argues that joint learning of novelty and emotion from the target text makes a strong case for misinformation detection. In this paper, we propose a deep multitask learning framework that jointly performs novelty detection, emotion recognition, and misinformation detection. Our deep multitask model achieves state-of-the-art (SOTA) performance for fake news detection on four benchmark datasets, viz. ByteDance, FNC, Covid-Stance and FNID with 7.73%, 3.69%, 7.95% and 13.38% accuracy gain, respectively. The evaluation shows that our multitask learning framework improves the performance over the single-task framework for four datasets with 7.8%, 28.62%, 11.46%, and 15.66% overall accuracy gain. We claim that textual novelty and emotion are the two key aspects to consider while developing an automatic fake news detection mechanism. The source code is available at https://github.com/Nish-19/Misinformation-Multitask-Attention-NE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助蓝妙弋采纳,获得10
刚刚
1秒前
高海龙发布了新的文献求助10
2秒前
3秒前
汉堡包应助xiaochuan采纳,获得10
4秒前
ZhuYJ发布了新的文献求助10
5秒前
5秒前
脑洞疼应助勾勾1991采纳,获得10
6秒前
lkx完成签到,获得积分10
6秒前
kamul发布了新的文献求助30
6秒前
SciGPT应助香蕉靖雁采纳,获得10
6秒前
绝不拖延完成签到,获得积分10
6秒前
7秒前
现代绮玉完成签到,获得积分10
8秒前
砍柴少年发布了新的文献求助10
8秒前
爆米花应助moreorless_zjh采纳,获得10
9秒前
YCQ发布了新的文献求助10
10秒前
AiX-zzzzz发布了新的文献求助10
10秒前
在水一方应助砍柴少年采纳,获得10
12秒前
完美世界应助WizBLue采纳,获得10
13秒前
kamul发布了新的文献求助10
13秒前
大模型应助方QL采纳,获得10
15秒前
慕青应助AiX-zzzzz采纳,获得10
16秒前
YCQ完成签到,获得积分10
16秒前
17秒前
梨理栗完成签到,获得积分10
18秒前
franca2005完成签到 ,获得积分10
18秒前
xiaochuan完成签到,获得积分10
20秒前
Jiangzhibing发布了新的文献求助10
23秒前
欢快的芹菜完成签到,获得积分10
23秒前
华仔应助科研通管家采纳,获得10
28秒前
未央应助科研通管家采纳,获得10
29秒前
爆米花应助科研通管家采纳,获得10
29秒前
李健的小迷弟应助XU采纳,获得10
30秒前
30秒前
31秒前
31秒前
31秒前
33秒前
Jiangzhibing发布了新的文献求助10
35秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951007
求助须知:如何正确求助?哪些是违规求助? 3496402
关于积分的说明 11081862
捐赠科研通 3226913
什么是DOI,文献DOI怎么找? 1784005
邀请新用户注册赠送积分活动 868114
科研通“疑难数据库(出版商)”最低求助积分说明 801003