Misinformation detection using multitask learning with mutual learning for novelty detection and emotion recognition

误传 新颖性 人工智能 计算机科学 认知心理学 惊喜 新知识检测 社会化媒体 欺骗 心理学 社会心理学 计算机安全 万维网
作者
Rina Kumari,Nischal Ashok,Tirthankar Ghosal,Asif Ekbal
出处
期刊:Information Processing and Management [Elsevier]
卷期号:58 (5): 102631-102631 被引量:49
标识
DOI:10.1016/j.ipm.2021.102631
摘要

Fake news or misinformation is the information or stories intentionally created to deceive or mislead the readers. Nowadays, social media platforms have become the ripe grounds for misinformation, spreading them in a few minutes, which led to chaos, panic, and potential health hazards among people. The rapid dissemination and a prolific rise in the spread of fake news and misinformation create the most time-critical challenges for the Natural Language Processing (NLP) community. Relevant literature reveals that the presence of an element of surprise in the story is a strong driving force for the rapid dissemination of misinformation, which attracts immediate attention and invokes strong emotional stimulus in the reader. False stories or fake information are written to arouse interest and activate the emotions of people to spread it. Thus, false stories have a higher level of novelty and emotional content than true stories. Hence, Novelty of the news item and recognizing the Emotional state of the reader after reading the item seems two key tasks to tightly couple with misinformation Detection. Previous literature did not explore misinformation detection with mutual learning for novelty detection and emotion recognition to the best of our knowledge. Our current work argues that joint learning of novelty and emotion from the target text makes a strong case for misinformation detection. In this paper, we propose a deep multitask learning framework that jointly performs novelty detection, emotion recognition, and misinformation detection. Our deep multitask model achieves state-of-the-art (SOTA) performance for fake news detection on four benchmark datasets, viz. ByteDance, FNC, Covid-Stance and FNID with 7.73%, 3.69%, 7.95% and 13.38% accuracy gain, respectively. The evaluation shows that our multitask learning framework improves the performance over the single-task framework for four datasets with 7.8%, 28.62%, 11.46%, and 15.66% overall accuracy gain. We claim that textual novelty and emotion are the two key aspects to consider while developing an automatic fake news detection mechanism. The source code is available at https://github.com/Nish-19/Misinformation-Multitask-Attention-NE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘肖发布了新的文献求助10
刚刚
业余专家完成签到,获得积分10
2秒前
3秒前
123发布了新的文献求助10
3秒前
乐乐应助木忻采纳,获得10
4秒前
4秒前
kinmon发布了新的文献求助10
4秒前
英俊的铭应助zz采纳,获得10
4秒前
6秒前
xpd发布了新的文献求助10
8秒前
火星上冥茗完成签到 ,获得积分10
8秒前
科研小菜狗完成签到,获得积分10
10秒前
10秒前
10秒前
大模型应助张巨锋采纳,获得10
11秒前
阿柱哥发布了新的文献求助10
12秒前
12秒前
谷安发布了新的文献求助10
12秒前
betyby完成签到 ,获得积分10
12秒前
善学以致用应助合适依秋采纳,获得10
14秒前
Gloven完成签到,获得积分10
14秒前
16秒前
通天塔发布了新的文献求助10
17秒前
高兴凌波完成签到,获得积分20
18秒前
zz发布了新的文献求助10
18秒前
18秒前
19秒前
kinmon完成签到,获得积分10
20秒前
20秒前
20秒前
21秒前
VV2001发布了新的文献求助10
22秒前
22秒前
852应助一个普通的学渣采纳,获得10
23秒前
无花果应助xinxin采纳,获得50
23秒前
23秒前
投机倒把发布了新的文献求助10
23秒前
24秒前
24秒前
24秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141028
求助须知:如何正确求助?哪些是违规求助? 2791955
关于积分的说明 7801220
捐赠科研通 2448217
什么是DOI,文献DOI怎么找? 1302479
科研通“疑难数据库(出版商)”最低求助积分说明 626591
版权声明 601226