已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Age Prediction by DNA Methylation in Neural Networks

过度拟合 DNA甲基化 人工神经网络 相关性 人工智能 计算机科学 表观遗传学 机器学习 数学 生物 遗传学 基因 几何学 基因表达
作者
Lechuan Li,Chonghao Zhang,Shiyu Liu,Hannah Guan,Yu Zhang
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:5
标识
DOI:10.1109/tcbb.2021.3084596
摘要

Aging is traditionally thought to be caused by complex and interacting factors such as DNA methylation. The traditional formula of DNA methylation aging is based on linear models and little work has explored the effectiveness of neural networks, which can learn non-linear relationships. DNA methylation data typically consists of hundreds of thousands of feature space and a much less number of biological samples. This leads to overfitting and a poor generalization of neural networks. We propose Correlation Pre-Filtered Neural Network (CPFNN) that uses Spearman Correlation to pre-filter the input features before feeding them into neural networks. We compare CPFNN with the statistical regressions (i.e., Horvath's and Hannum's formulas), the neural networks with LASSO regularization and elastic net regularization, and the Dropout Neural Networks. CPFNN outperforms these models by at least 1 year in term of Mean Absolute Error (MAE), with a MAE of 2.7 years. We also test for association between the epigenetic age with Schizophrenia and Down Syndrome ( p=0.024 and , respectively). We discover that for a large number of candidate features, such as genome-wide DNA methylation data, a key factor in improving prediction accuracy is to appropriately weight features that are highly correlated with the outcome of interest.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Asteria发布了新的文献求助10
刚刚
3秒前
3秒前
干羞花完成签到,获得积分10
4秒前
5秒前
andrele发布了新的文献求助10
6秒前
6秒前
gb发布了新的文献求助10
6秒前
真实的采白完成签到 ,获得积分10
10秒前
安吖完成签到,获得积分10
11秒前
12秒前
car子发布了新的文献求助10
12秒前
12秒前
acceleactor完成签到,获得积分10
12秒前
14秒前
强大的女人完成签到,获得积分20
15秒前
15秒前
18秒前
乐乐应助car子采纳,获得10
19秒前
20秒前
20秒前
22秒前
23秒前
wanci应助爽朗雨后风采纳,获得10
23秒前
wintersss发布了新的文献求助10
23秒前
车败发布了新的文献求助10
24秒前
25秒前
26秒前
27秒前
小D发布了新的文献求助30
27秒前
藏沙完成签到 ,获得积分10
28秒前
约以文发布了新的文献求助10
28秒前
爆米花应助优秀的馒头采纳,获得10
29秒前
咚咚应助jonathan采纳,获得10
30秒前
科研fw完成签到,获得积分10
32秒前
szong发布了新的文献求助10
32秒前
可靠晓山发布了新的文献求助10
32秒前
33秒前
约以文完成签到,获得积分10
34秒前
CHL完成签到,获得积分10
35秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310840
求助须知:如何正确求助?哪些是违规求助? 2943651
关于积分的说明 8515912
捐赠科研通 2619022
什么是DOI,文献DOI怎么找? 1431741
科研通“疑难数据库(出版商)”最低求助积分说明 664472
邀请新用户注册赠送积分活动 649732