A calibration method for enhancing robot accuracy through integration of kinematic model and spatial interpolation algorithm

计算机科学 残余物 算法 插值(计算机图形学) 机械加工 职位(财务) 运动学 计算机视觉 工程类 运动(物理) 财务 经典力学 机械工程 物理 经济
作者
Junde Qi,Bing Chen,Dinghua Zhang
出处
期刊:Journal of Mechanisms and Robotics [ASM International]
卷期号:: 1-27 被引量:19
标识
DOI:10.1115/1.4051061
摘要

Abstract Industrial robots are finding their niche in the field of machining due to their advantages of high flexibility, good versatility and low cost. However, limited by the low absolute positioning accuracy, there are still huge obstacles in high precision machining processes such as grinding. Aiming at this problem, a compensation method combining analytical modeling for quantitative errors with spatial interpolation algorithm for random errors is proposed based on the full consideration of the source and characteristics of positioning errors. Firstly, as for the quantitative errors, namely geometric parameter and compliance error in this paper, a kinematics-based error model is constructed taking the coupling effect of errors into consideration. Then avoiding the impact of random errors, the extended Kalman filtering algorithm (EKF) is adopted to identify the error parameters. Secondly, based on the similarity principle of spatial error, spatial interpolation algorithm is used to model the residual error caused by temperature, gear clearance etc. Based on the spatial anisotropy characteristics of robot motion performance, an adaptive mesh division algorithm was proposed to balance the accuracy and efficiency of mesh division. Then, an inverse distance weighted interpolation algorithm considering the influence degree of different joints on the end position was established to improve the approximation accuracy of residual error. Finally, the rough-fine two-stage serial error compensation method was carried out. Experimental results show the mean absolute positioning accuracy is improved from 1.165 mm to 0.106 mm, which demonstrates the effectiveness of the method in this paper.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
123发布了新的文献求助10
刚刚
1秒前
1秒前
wk完成签到,获得积分10
1秒前
3秒前
3秒前
ainan发布了新的文献求助10
4秒前
4秒前
好运6连发布了新的文献求助10
4秒前
拔丝兔子发布了新的文献求助10
4秒前
TJ完成签到,获得积分10
4秒前
Akim应助粗心的千凡采纳,获得10
4秒前
4秒前
花生土豆完成签到,获得积分10
4秒前
一颗柠檬发布了新的文献求助10
5秒前
111发布了新的文献求助10
5秒前
共享精神应助刘隅采纳,获得10
5秒前
5秒前
5秒前
6秒前
麻麻发布了新的文献求助10
6秒前
wanci应助Andy采纳,获得10
7秒前
美满的山菡关注了科研通微信公众号
7秒前
善学以致用应助安殿夏采纳,获得10
7秒前
CodeCraft应助氨基丙采纳,获得10
8秒前
任性的树叶完成签到 ,获得积分10
8秒前
灵巧的新烟完成签到 ,获得积分10
8秒前
阳光的伊发布了新的文献求助10
8秒前
TJ发布了新的文献求助10
8秒前
8秒前
9秒前
coryyyy完成签到,获得积分20
9秒前
徐橙橙发布了新的文献求助10
9秒前
牛牛完成签到,获得积分10
9秒前
Mayday完成签到,获得积分10
9秒前
小杜发布了新的文献求助10
10秒前
11秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Research Handbook on Corporate Governance in China 800
2025-2031年中国中低通量测序仪行业市场深度研究及投资策略研究报告 500
translating meaning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4904938
求助须知:如何正确求助?哪些是违规求助? 4183061
关于积分的说明 12988261
捐赠科研通 3949052
什么是DOI,文献DOI怎么找? 2165793
邀请新用户注册赠送积分活动 1184289
关于科研通互助平台的介绍 1090609