A calibration method for enhancing robot accuracy through integration of kinematic model and spatial interpolation algorithm

计算机科学 残余物 算法 插值(计算机图形学) 机械加工 职位(财务) 运动学 计算机视觉 工程类 运动(物理) 财务 经典力学 机械工程 物理 经济
作者
Junde Qi,Bing Chen,Dinghua Zhang
出处
期刊:Journal of Mechanisms and Robotics [ASME International]
卷期号:: 1-27 被引量:19
标识
DOI:10.1115/1.4051061
摘要

Abstract Industrial robots are finding their niche in the field of machining due to their advantages of high flexibility, good versatility and low cost. However, limited by the low absolute positioning accuracy, there are still huge obstacles in high precision machining processes such as grinding. Aiming at this problem, a compensation method combining analytical modeling for quantitative errors with spatial interpolation algorithm for random errors is proposed based on the full consideration of the source and characteristics of positioning errors. Firstly, as for the quantitative errors, namely geometric parameter and compliance error in this paper, a kinematics-based error model is constructed taking the coupling effect of errors into consideration. Then avoiding the impact of random errors, the extended Kalman filtering algorithm (EKF) is adopted to identify the error parameters. Secondly, based on the similarity principle of spatial error, spatial interpolation algorithm is used to model the residual error caused by temperature, gear clearance etc. Based on the spatial anisotropy characteristics of robot motion performance, an adaptive mesh division algorithm was proposed to balance the accuracy and efficiency of mesh division. Then, an inverse distance weighted interpolation algorithm considering the influence degree of different joints on the end position was established to improve the approximation accuracy of residual error. Finally, the rough-fine two-stage serial error compensation method was carried out. Experimental results show the mean absolute positioning accuracy is improved from 1.165 mm to 0.106 mm, which demonstrates the effectiveness of the method in this paper.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不配.应助Zhuzhu采纳,获得200
刚刚
刚刚
1秒前
闪闪傲旋发布了新的文献求助10
1秒前
ZZC10完成签到,获得积分10
2秒前
2秒前
YLi_746发布了新的文献求助10
2秒前
2秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
尤大二发布了新的文献求助10
3秒前
3秒前
3秒前
CipherSage应助sangsang采纳,获得10
3秒前
4秒前
乔乔兔发布了新的文献求助10
4秒前
小蘑菇应助yulin采纳,获得10
4秒前
5秒前
5秒前
科研通AI6应助雪花采纳,获得10
5秒前
5秒前
LeeHx完成签到 ,获得积分10
5秒前
6秒前
6秒前
Flash2002完成签到,获得积分20
6秒前
6秒前
6秒前
7秒前
浮华完成签到,获得积分10
7秒前
专注白昼发布了新的文献求助10
7秒前
7秒前
junfeiwang发布了新的文献求助10
8秒前
科研通AI6应助叶远望采纳,获得10
8秒前
8秒前
8秒前
风中冰香应助大力寒荷采纳,获得20
9秒前
9秒前
pingpinglver发布了新的文献求助10
9秒前
密斯特蟹发布了新的文献求助10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5531940
求助须知:如何正确求助?哪些是违规求助? 4620674
关于积分的说明 14574347
捐赠科研通 4560401
什么是DOI,文献DOI怎么找? 2498857
邀请新用户注册赠送积分活动 1478757
关于科研通互助平台的介绍 1450090