Radiomics-based differentiation between glioblastoma and primary central nervous system lymphoma: a comparison of diagnostic performance across different MRI sequences and machine learning techniques

人工智能 特征选择 神经组阅片室 机器学习 医学 无线电技术 胶质母细胞瘤 特征(语言学) 选型 预测建模 计算机科学 模式识别(心理学) 神经学 癌症研究 哲学 精神科 语言学
作者
Girish Bathla,Sarv Priya,Yanan Liu,Caitlin Ward,Nam H. Le,Neetu Soni,Ravishankar Pillenahalli Maheshwarappa,Varun Monga,Honghai Zhang,Milan Sonka
出处
期刊:European Radiology [Springer Nature]
卷期号:31 (11): 8703-8713 被引量:40
标识
DOI:10.1007/s00330-021-07845-6
摘要

Despite the robust diagnostic performance of MRI-based radiomic features for differentiating between glioblastoma (GBM) and primary central nervous system lymphoma (PCNSL) reported on prior studies, the best sequence or a combination of sequences and model performance across various machine learning pipelines remain undefined. Herein, we compare the diagnostic performance of multiple radiomics-based models to differentiate GBM from PCNSL. Our retrospective study included 94 patients (34 with PCNSL and 60 with GBM). Model performance was assessed using various MRI sequences across 45 possible model and feature selection combinations for nine different sequence permutations. Predictive performance was assessed using fivefold repeated cross-validation with five repeats. The best and worst performing models were compared to assess differences in performance. The predictive performance, both using individual and a combination of sequences, was fairly robust across multiple top performing models (AUC: 0.961–0.977) but did show considerable variation between the best and worst performing models. The top performing individual sequences had comparable performance to multiparametric models. The best prediction model in our study used a combination of ADC, FLAIR, and T1-CE achieving the highest AUC of 0.977, while the second ranked model used T1-CE and ADC, achieving a cross-validated AUC of 0.975. Radiomics-based predictive accuracy can vary considerably, based on the model and feature selection methods as well as the combination of sequences used. Also, models derived from limited sequences show performance comparable to those derived from all five sequences. • Radiomics-based diagnostic performance of various machine learning models for differentiating glioblastoma and PCNSL varies considerably. • ML models using limited or multiple MRI sequences can provide comparable performance, based on the chosen model. • Embedded feature selection models perform better than models using a priori feature reduction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
SHINING完成签到 ,获得积分20
刚刚
星辰大海应助寻觅采纳,获得10
1秒前
无餍应助洛洛采纳,获得10
1秒前
别止发布了新的文献求助10
3秒前
3秒前
balabala发布了新的文献求助10
4秒前
慕青应助123采纳,获得10
4秒前
蛇虫鼠蚁发布了新的文献求助10
6秒前
不安青牛举报绛绛求助涉嫌违规
7秒前
不安青牛应助鹿冶采纳,获得10
7秒前
善学以致用应助墨MOL采纳,获得10
8秒前
8秒前
9秒前
9秒前
10秒前
大模型应助华北第一深情采纳,获得20
10秒前
无情的笑萍完成签到,获得积分20
10秒前
11秒前
chen应助wanshuixiaowu173采纳,获得10
12秒前
pcx发布了新的文献求助10
13秒前
咩咩发布了新的文献求助10
13秒前
檬檬完成签到,获得积分10
14秒前
香蕉觅云应助笑弯了眼采纳,获得10
14秒前
阳光怀亦发布了新的文献求助10
15秒前
15秒前
17秒前
17秒前
代建成发布了新的文献求助10
17秒前
111完成签到,获得积分10
18秒前
20秒前
清爽的向秋完成签到 ,获得积分10
20秒前
MER完成签到 ,获得积分10
20秒前
FIN应助香蕉谷芹采纳,获得10
20秒前
UPT完成签到,获得积分10
20秒前
333完成签到,获得积分10
21秒前
zrr发布了新的文献求助10
21秒前
汉堡包应助妮妮采纳,获得10
21秒前
wanna完成签到,获得积分10
22秒前
花凉发布了新的文献求助10
22秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459163
求助须知:如何正确求助?哪些是违规求助? 3053710
关于积分的说明 9037991
捐赠科研通 2742977
什么是DOI,文献DOI怎么找? 1504606
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694663