Radiomics-based differentiation between glioblastoma and primary central nervous system lymphoma: a comparison of diagnostic performance across different MRI sequences and machine learning techniques

人工智能 特征选择 神经组阅片室 机器学习 医学 无线电技术 胶质母细胞瘤 特征(语言学) 选型 预测建模 计算机科学 模式识别(心理学) 神经学 癌症研究 哲学 精神科 语言学
作者
Girish Bathla,Sarv Priya,Yanan Liu,Caitlin Ward,Nam H. Le,Neetu Soni,Ravishankar Pillenahalli Maheshwarappa,Varun Monga,Honghai Zhang,Milan Sonka
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:31 (11): 8703-8713 被引量:47
标识
DOI:10.1007/s00330-021-07845-6
摘要

Despite the robust diagnostic performance of MRI-based radiomic features for differentiating between glioblastoma (GBM) and primary central nervous system lymphoma (PCNSL) reported on prior studies, the best sequence or a combination of sequences and model performance across various machine learning pipelines remain undefined. Herein, we compare the diagnostic performance of multiple radiomics-based models to differentiate GBM from PCNSL. Our retrospective study included 94 patients (34 with PCNSL and 60 with GBM). Model performance was assessed using various MRI sequences across 45 possible model and feature selection combinations for nine different sequence permutations. Predictive performance was assessed using fivefold repeated cross-validation with five repeats. The best and worst performing models were compared to assess differences in performance. The predictive performance, both using individual and a combination of sequences, was fairly robust across multiple top performing models (AUC: 0.961–0.977) but did show considerable variation between the best and worst performing models. The top performing individual sequences had comparable performance to multiparametric models. The best prediction model in our study used a combination of ADC, FLAIR, and T1-CE achieving the highest AUC of 0.977, while the second ranked model used T1-CE and ADC, achieving a cross-validated AUC of 0.975. Radiomics-based predictive accuracy can vary considerably, based on the model and feature selection methods as well as the combination of sequences used. Also, models derived from limited sequences show performance comparable to those derived from all five sequences. • Radiomics-based diagnostic performance of various machine learning models for differentiating glioblastoma and PCNSL varies considerably. • ML models using limited or multiple MRI sequences can provide comparable performance, based on the chosen model. • Embedded feature selection models perform better than models using a priori feature reduction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zmj完成签到,获得积分10
刚刚
1秒前
搞怪斑马发布了新的文献求助10
1秒前
zhangmin发布了新的文献求助10
1秒前
万老头发布了新的文献求助10
2秒前
自觉小凡发布了新的文献求助20
2秒前
3秒前
kk完成签到,获得积分10
3秒前
ranjeah完成签到 ,获得积分10
3秒前
4秒前
得之我幸完成签到,获得积分10
5秒前
6秒前
激情的自行车完成签到,获得积分10
7秒前
7秒前
白蓝红完成签到 ,获得积分10
7秒前
8秒前
8秒前
8秒前
JamesPei应助科研小白采纳,获得10
9秒前
深情安青应助runtang采纳,获得30
9秒前
songcy7完成签到,获得积分10
9秒前
烟花应助六芒星采纳,获得10
10秒前
andy_lee发布了新的文献求助10
10秒前
11秒前
司徒水绿完成签到 ,获得积分10
11秒前
嘻嘻嘻发布了新的文献求助10
11秒前
削皮柚子发布了新的文献求助10
12秒前
俭朴蜜蜂发布了新的文献求助200
13秒前
依夏祭完成签到,获得积分10
14秒前
cc完成签到 ,获得积分10
14秒前
14秒前
天天快乐应助粤十一采纳,获得10
15秒前
YiJin_Wang发布了新的文献求助10
16秒前
乐情发布了新的文献求助20
16秒前
19秒前
wxs发布了新的文献求助10
19秒前
可爱的函函应助酷酷巧蟹采纳,获得10
20秒前
20秒前
blablawindy发布了新的文献求助10
21秒前
科研小白发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4578059
求助须知:如何正确求助?哪些是违规求助? 3997093
关于积分的说明 12374500
捐赠科研通 3671156
什么是DOI,文献DOI怎么找? 2023295
邀请新用户注册赠送积分活动 1057253
科研通“疑难数据库(出版商)”最低求助积分说明 944206