Radiomics-based differentiation between glioblastoma and primary central nervous system lymphoma: a comparison of diagnostic performance across different MRI sequences and machine learning techniques

人工智能 特征选择 神经组阅片室 机器学习 医学 无线电技术 胶质母细胞瘤 特征(语言学) 选型 预测建模 计算机科学 模式识别(心理学) 神经学 癌症研究 哲学 精神科 语言学
作者
Girish Bathla,Sarv Priya,Yanan Liu,Caitlin Ward,Nam H. Le,Neetu Soni,Ravishankar Pillenahalli Maheshwarappa,Varun Monga,Honghai Zhang,Milan Sonka
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:31 (11): 8703-8713 被引量:47
标识
DOI:10.1007/s00330-021-07845-6
摘要

Despite the robust diagnostic performance of MRI-based radiomic features for differentiating between glioblastoma (GBM) and primary central nervous system lymphoma (PCNSL) reported on prior studies, the best sequence or a combination of sequences and model performance across various machine learning pipelines remain undefined. Herein, we compare the diagnostic performance of multiple radiomics-based models to differentiate GBM from PCNSL. Our retrospective study included 94 patients (34 with PCNSL and 60 with GBM). Model performance was assessed using various MRI sequences across 45 possible model and feature selection combinations for nine different sequence permutations. Predictive performance was assessed using fivefold repeated cross-validation with five repeats. The best and worst performing models were compared to assess differences in performance. The predictive performance, both using individual and a combination of sequences, was fairly robust across multiple top performing models (AUC: 0.961–0.977) but did show considerable variation between the best and worst performing models. The top performing individual sequences had comparable performance to multiparametric models. The best prediction model in our study used a combination of ADC, FLAIR, and T1-CE achieving the highest AUC of 0.977, while the second ranked model used T1-CE and ADC, achieving a cross-validated AUC of 0.975. Radiomics-based predictive accuracy can vary considerably, based on the model and feature selection methods as well as the combination of sequences used. Also, models derived from limited sequences show performance comparable to those derived from all five sequences. • Radiomics-based diagnostic performance of various machine learning models for differentiating glioblastoma and PCNSL varies considerably. • ML models using limited or multiple MRI sequences can provide comparable performance, based on the chosen model. • Embedded feature selection models perform better than models using a priori feature reduction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助张琪采纳,获得200
刚刚
lalala发布了新的文献求助10
1秒前
2秒前
诸葛藏藏完成签到 ,获得积分10
3秒前
3秒前
结实的灯泡完成签到 ,获得积分20
4秒前
Air完成签到 ,获得积分10
5秒前
7秒前
小薛发布了新的文献求助10
7秒前
7秒前
安子歌完成签到,获得积分10
8秒前
8秒前
完美世界应助科研通管家采纳,获得10
8秒前
SciGPT应助photogragher采纳,获得10
8秒前
Lucas应助科研通管家采纳,获得10
8秒前
9秒前
小蘑菇应助科研通管家采纳,获得10
9秒前
桐桐应助科研通管家采纳,获得10
9秒前
田様应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得150
9秒前
SciGPT应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
英俊的铭应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
英俊的铭应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得150
10秒前
lalala完成签到,获得积分10
10秒前
NexusExplorer应助科研通管家采纳,获得10
10秒前
烤冷面应助科研通管家采纳,获得30
10秒前
小戴应助科研通管家采纳,获得20
10秒前
10秒前
Akim应助科研通管家采纳,获得10
10秒前
量子星尘发布了新的文献求助10
10秒前
核桃应助科研通管家采纳,获得10
10秒前
nice应助科研通管家采纳,获得10
10秒前
英姑应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 500
translating meaning 500
Storie e culture della televisione 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4903429
求助须知:如何正确求助?哪些是违规求助? 4182000
关于积分的说明 12984141
捐赠科研通 3947419
什么是DOI,文献DOI怎么找? 2165166
邀请新用户注册赠送积分活动 1183456
关于科研通互助平台的介绍 1089838