Radiomics-based differentiation between glioblastoma and primary central nervous system lymphoma: a comparison of diagnostic performance across different MRI sequences and machine learning techniques

人工智能 特征选择 神经组阅片室 机器学习 医学 无线电技术 胶质母细胞瘤 特征(语言学) 选型 预测建模 计算机科学 模式识别(心理学) 神经学 癌症研究 哲学 精神科 语言学
作者
Girish Bathla,Sarv Priya,Yanan Liu,Caitlin Ward,Nam H. Le,Neetu Soni,Ravishankar Pillenahalli Maheshwarappa,Varun Monga,Honghai Zhang,Milan Sonka
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:31 (11): 8703-8713 被引量:47
标识
DOI:10.1007/s00330-021-07845-6
摘要

Despite the robust diagnostic performance of MRI-based radiomic features for differentiating between glioblastoma (GBM) and primary central nervous system lymphoma (PCNSL) reported on prior studies, the best sequence or a combination of sequences and model performance across various machine learning pipelines remain undefined. Herein, we compare the diagnostic performance of multiple radiomics-based models to differentiate GBM from PCNSL. Our retrospective study included 94 patients (34 with PCNSL and 60 with GBM). Model performance was assessed using various MRI sequences across 45 possible model and feature selection combinations for nine different sequence permutations. Predictive performance was assessed using fivefold repeated cross-validation with five repeats. The best and worst performing models were compared to assess differences in performance. The predictive performance, both using individual and a combination of sequences, was fairly robust across multiple top performing models (AUC: 0.961–0.977) but did show considerable variation between the best and worst performing models. The top performing individual sequences had comparable performance to multiparametric models. The best prediction model in our study used a combination of ADC, FLAIR, and T1-CE achieving the highest AUC of 0.977, while the second ranked model used T1-CE and ADC, achieving a cross-validated AUC of 0.975. Radiomics-based predictive accuracy can vary considerably, based on the model and feature selection methods as well as the combination of sequences used. Also, models derived from limited sequences show performance comparable to those derived from all five sequences. • Radiomics-based diagnostic performance of various machine learning models for differentiating glioblastoma and PCNSL varies considerably. • ML models using limited or multiple MRI sequences can provide comparable performance, based on the chosen model. • Embedded feature selection models perform better than models using a priori feature reduction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助科研通管家采纳,获得30
刚刚
JamesPei应助科研通管家采纳,获得10
刚刚
赘婿应助科研通管家采纳,获得10
刚刚
刚刚
爆米花应助科研通管家采纳,获得30
刚刚
在水一方应助科研通管家采纳,获得10
刚刚
刚刚
思源应助科研通管家采纳,获得10
刚刚
funi完成签到,获得积分10
1秒前
鞠佳园发布了新的文献求助10
1秒前
星辰大海应助文明8采纳,获得10
1秒前
wufel完成签到,获得积分10
2秒前
风中的丝袜完成签到,获得积分10
2秒前
Carbon发布了新的文献求助10
2秒前
2秒前
雪白的如天完成签到 ,获得积分10
4秒前
端庄的冰之完成签到,获得积分10
5秒前
科研通AI5应助饼藏采纳,获得10
6秒前
沐沐发布了新的文献求助30
6秒前
7秒前
个别完成签到,获得积分10
7秒前
纵然关注了科研通微信公众号
7秒前
Dannnn完成签到 ,获得积分10
7秒前
7秒前
科研通AI2S应助端庄的冰之采纳,获得10
8秒前
9秒前
10秒前
梨江鱼完成签到,获得积分10
11秒前
踏实凡阳发布了新的文献求助10
12秒前
12秒前
数值分析发布了新的文献求助10
13秒前
Mlxg发布了新的文献求助30
13秒前
观zz发布了新的文献求助10
13秒前
14秒前
14秒前
14秒前
华仔应助Steve采纳,获得10
14秒前
如意书桃发布了新的文献求助10
14秒前
xiaochen发布了新的文献求助10
15秒前
Ava应助Messi采纳,获得10
16秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967841
求助须知:如何正确求助?哪些是违规求助? 3512958
关于积分的说明 11165751
捐赠科研通 3248019
什么是DOI,文献DOI怎么找? 1794087
邀请新用户注册赠送积分活动 874843
科研通“疑难数据库(出版商)”最低求助积分说明 804578