材料科学
连接器
光电流
催化作用
化学工程
傅里叶变换红外光谱
化学计量学
光谱学
结晶学
物理化学
化学
有机化学
物理
工程类
操作系统
量子力学
光电子学
计算机科学
作者
Tengfei Chen,Lin-Yang Wang,Yifan Wang,Hui Gao,Jing He,Guo Wang,Xiangfu Meng,Yishi Wu,Yu‐Heng Deng,Chong‐Qing Wan
标识
DOI:10.1021/acsami.1c04130
摘要
Two new sets of UiO-Zr metal–organic framework (MOF) bearing mixed linkers BDC-(SCH3)2 and BDC-(SOCH3)2 that have different band gaps and edges were prepared through post oxidation and direct methods, namely, UiO-66-(SCH3)2-xh (x = 4, 9, 12 oxidation hours) and UiO-66-(SOCH3)x(SCH3)2–x (x = 0, 0.4, 0.6, 2), respectively. These composites with stoichiometric components were fully characterized via proton nuclear magnetic resonance (1H NMR) spectroscopy, powder X-ray diffraction (PXRD), transmission electron microscopy (TEM), Fourier-transform infrared (FT-IR) spectra, Brunauer–Emmett–Teller (BET), photo electrochemical measurements, and femtosecond transient absorption (fs-TA) spectroscopy. The structure, electronic property, and photoresponsive and catalytic ability as the functions of the molar ratio of linkers and the synthetic protocol were first investigated. The mixed-linker UiO-66-(SCH3)2-xh and UiO-66-(SOCH3)x(SCH3)2–x exhibited improved performances as compared to the UiO-66-(SCH3)2 and UiO-66-(SOCH3)2 possessing neat linkers only. Their photo response and catalytic activity varied with different linker ratios. For UiO-66-(SCH3)2-xh, the performance increased with the increasing linker BDC-(SOCH3)2 ratio upon oxidation but reached the highest as the BDC-(SOCH3)2 being of 24.4% in UiO-66-(SCH3)2-9h. In comparison, the best photocurrent (80.74 uA/cm–2) and the highest H2 generation rate (2018.8 μmol g–1 h–1) (λ > 400 nm) in UiO-66-(SCH3)2-9h are about twice those of UiO-66-(SOCH3)0.4(SCH3)1.6 obtained by direct synthesis, although the linker BDC-(SOCH3)2 ratio of those two composites is almost the same (24.4% vs 23.9%). Recorded shorter lifetime and higher charge separation efficiency of the former than those of the latter suggest the postsynthetic protocol as the efficient method for achieving the mixed-liner-MOF-based photocatalyst with high performance. A new type-II tailored homojunction is proposed in these mixed-linker MOFs for their efficient charge separation and improved activity.
科研通智能强力驱动
Strongly Powered by AbleSci AI