Class-Imbalanced Deep Learning via a Class-Balanced Ensemble

人工智能 计算机科学 卷积神经网络 深度学习 机器学习 集成学习 分类器(UML) 水准点(测量) 班级(哲学) 深层神经网络 人工神经网络 模式识别(心理学) 大地测量学 地理
作者
Zhi Chen,Zhi Chen,Kang Li,Guoping Qiu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:33 (10): 5626-5640 被引量:25
标识
DOI:10.1109/tnnls.2021.3071122
摘要

Class imbalance is a prevalent phenomenon in various real-world applications and it presents significant challenges to model learning, including deep learning. In this work, we embed ensemble learning into the deep convolutional neural networks (CNNs) to tackle the class-imbalanced learning problem. An ensemble of auxiliary classifiers branching out from various hidden layers of a CNN is trained together with the CNN in an end-to-end manner. To that end, we designed a new loss function that can rectify the bias toward the majority classes by forcing the CNN's hidden layers and its associated auxiliary classifiers to focus on the samples that have been misclassified by previous layers, thus enabling subsequent layers to develop diverse behavior and fix the errors of previous layers in a batch-wise manner. A unique feature of the new method is that the ensemble of auxiliary classifiers can work together with the main CNN to form a more powerful combined classifier, or can be removed after finished training the CNN and thus only acting the role of assisting class imbalance learning of the CNN to enhance the neural network's capability in dealing with class-imbalanced data. Comprehensive experiments are conducted on four benchmark data sets of increasing complexity (CIFAR-10, CIFAR-100, iNaturalist, and CelebA) and the results demonstrate significant performance improvements over the state-of-the-art deep imbalance learning methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
大个应助陈俊辉采纳,获得10
刚刚
1秒前
1秒前
拉拉霍霍发布了新的文献求助10
1秒前
Cc完成签到,获得积分10
1秒前
2秒前
haowu发布了新的文献求助20
2秒前
领导范儿应助MQRR采纳,获得10
2秒前
4秒前
敏子完成签到,获得积分10
4秒前
twenty完成签到 ,获得积分10
5秒前
yxt发布了新的文献求助10
5秒前
重要的又亦完成签到 ,获得积分10
5秒前
无奈的映波完成签到,获得积分20
6秒前
自信寒蕾发布了新的文献求助10
6秒前
拉拉霍霍完成签到,获得积分10
8秒前
研友_nv4Bx8完成签到,获得积分10
10秒前
花佚狐完成签到,获得积分10
10秒前
11秒前
11秒前
Cyber_relic完成签到,获得积分10
12秒前
孤独的慕蕊完成签到,获得积分10
13秒前
14秒前
JamesPei应助自信寒蕾采纳,获得10
14秒前
15秒前
巴啦啦能量完成签到 ,获得积分10
16秒前
ding应助Noah采纳,获得10
16秒前
18秒前
陈俊辉发布了新的文献求助10
18秒前
酒石酸完成签到,获得积分10
18秒前
zhao发布了新的文献求助10
18秒前
墩子完成签到,获得积分10
18秒前
18秒前
唐少北发布了新的文献求助30
19秒前
19秒前
21秒前
守仁则阳明完成签到 ,获得积分10
21秒前
22秒前
yxt完成签到,获得积分10
22秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 830
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3247916
求助须知:如何正确求助?哪些是违规求助? 2891121
关于积分的说明 8266358
捐赠科研通 2559345
什么是DOI,文献DOI怎么找? 1388162
科研通“疑难数据库(出版商)”最低求助积分说明 650698
邀请新用户注册赠送积分活动 627590