高光谱成像
计算机科学
人工智能
判别式
深度学习
模式识别(心理学)
RGB颜色模型
水准点(测量)
计算机视觉
大地测量学
地理
作者
Zhenqi Liu,Yanfei Zhong,Xinyu Wang,Shu Meng,Liangpei Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing
[Institute of Electrical and Electronics Engineers]
日期:2021-11-23
卷期号:60: 1-14
被引量:24
标识
DOI:10.1109/tgrs.2021.3111183
摘要
Target tracking has received increased attention in the past few decades. However, most of the target tracking algorithms are based on RGB video data, and few are based on hyperspectral video data. With the development of the new "snapshot" hyperspectral sensors, hyperspectral videos can now be easily obtained. However, hyperspectral video target tracking datasets are still rare. In this article, a high spectral-spatial-temporal resolution hyperspectral video target tracking algorithm framework (H 3 Net) based on deep learning is proposed. The proposed framework consists of two main parts: 1) an unsupervised deep learning-based target tracking training framework for hyperspectral video; and 2) a dual-branch network structure based on a Siamese network. Using the dual-branch network, the H 3 Net framework can utilize both the spatial and spectral information. The combination of deep learning and a discriminative correlation filter (DCF) makes the features extracted by deep learning more suitable for the DCF. Compared with hyperspectral images, hyperspectral video data require more manpower to annotate, so we propose an unsupervised approach to train H 3 Net, without any annotation. To solve the problem of the lack of hyperspectral video datasets, we built a 25-band hyperspectral video dataset (the high spectral-spatial-temporal resolution hyperspectral video dataset: the WHU-Hi-H 3 dataset) for target tracking. The experimental results obtained with the WHU-Hi-H 3 dataset confirm the potential of unsupervised deep learning in hyperspectral video target tracking.
科研通智能强力驱动
Strongly Powered by AbleSci AI