过饱和度
溶解度
溶解
化学
水解
催化作用
同种类的
组合化学
有机化学
热力学
物理
作者
Yixiao Fan,Yingbo Li,Qingfen Liu
标识
DOI:10.1007/s12010-021-03705-7
摘要
Enzymatic catalysis has been recognized as a green alternative to classical chemical route for synthesis of cephalexin (CEX). However, its industrial practice has been severely limited by the low productivity due to the low solubility of 7-amino-3-deacetoxycephalosporanic acid (7-ADCA) and high hydrolysis of D-phenylglycine methyl ester (PGME). In this work, the enhanced dissolution of 7-ADCA in the presence of PGME for efficient enzymatic synthesis of CEX was investigated. Results showed that the solubility of 7-ADCA in water could be improved by PGME. Moreover, supersaturated solution of 7-ADCA could be created in the presence of PGME by a pH shift strategy. The supersaturated solution of 7-ADCA possess good stability, which could be explained in terms of the inhibition of 7-ADCA precipitation due to the presence of PGME. The interaction between 7-ADCA and PGME is explored by spectroscopic determination and DFT analysis and the mechanism of enhanced dissolution of 7-ADCA in the presence of PGME is discussed and proposed. The feasibility of supersaturated solution of 7-ADCA for the enzymatic synthesis of CEX is evaluated. It was demonstrated that high conversion ratio (> 95.0%) and productivity (> 240.0 mmol/L/h) was obtained under a wide range of reaction conditions, indicating that the supersaturated solution system was highly superior to conventional homogeneous solution system. The information obtained in this work will be helpful to industrial production of CEX via enzymatic route.
科研通智能强力驱动
Strongly Powered by AbleSci AI