NAS-SGAN: A Semi-supervised Generative Adversarial Network Model for Atypia Scoring of Breast Cancer Histopathological Images.

作者
Asha Das,Vinod Kumar Devarampati,Madhu S. Nair
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/jbhi.2021.3131103
摘要

Nuclear atypia scoring (NAS), forms a significant factor in determining individualized treatment plans and also for the prognosis of the disease. Automation of cancer grading using quantitative image-based analysis of histopathological images can circumvent the shortcomings of the prevailing manual grading and can assist the pathologists in cancer diagnosis. However, developing such a robust classifier model require sufficient amount of annotated data, while the labeled histopathological images are scarce and expensive to procure as annotation forms a time-consuming and laborious task. Hence, a semisupervised learning framework combined with the deep neural network based generative adversarial training, that can improve the performance of the classification model with limited annotated data, is proposed in this paper. The proposed NAS-SGAN model consists of discriminator and generator models that are trained in an adversarial manner using both labeled and unlabeled samples. The discriminator model is designed as an unsupervised model stacked over the supervised model sharing the model parameters and learns the data distribution by extracting the discriminative features. The generator model is trained over a stable feature matching objective function following a composite GAN architecture. The novelty of the proposed model is that, we have used a stacked supervised and unsupervised discriminator and a feature matching generator for the NAS-SGAN model and its for the first time the semi-supervised GAN model is explored for the grading of breast cancer. Experimental analysis shows that the proposed model could better discriminate different cancer grades thereby improving the robustness and accuracy of the system, even with limited amount of labeled samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hui发布了新的文献求助10
刚刚
刚刚
球球尧伞耳完成签到,获得积分10
1秒前
钮卿完成签到 ,获得积分10
2秒前
2秒前
无私的颤完成签到,获得积分10
2秒前
我是老大应助xxxxx采纳,获得10
2秒前
苏哼哼发布了新的文献求助10
2秒前
2秒前
小郭小郭福气多多完成签到,获得积分10
2秒前
单身的世倌完成签到,获得积分20
2秒前
陈晓聪完成签到,获得积分10
3秒前
3秒前
ljfarm发布了新的文献求助10
3秒前
3秒前
3秒前
Zzz_Carlos完成签到 ,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
研友_ZegMrL完成签到,获得积分10
4秒前
踏实的白羊完成签到,获得积分10
5秒前
lalala发布了新的文献求助10
5秒前
丁仪完成签到,获得积分10
5秒前
Singularity应助wen采纳,获得10
5秒前
liu发布了新的文献求助10
5秒前
paprika完成签到,获得积分10
5秒前
华仔应助猪猪猪采纳,获得10
6秒前
方法法国衣服头发完成签到,获得积分10
6秒前
orixero应助阿氏之光采纳,获得10
6秒前
7秒前
SQ发布了新的文献求助10
7秒前
tinge发布了新的文献求助10
7秒前
Qin完成签到,获得积分10
8秒前
龙龖龘完成签到,获得积分10
8秒前
8秒前
所所应助lulu采纳,获得10
8秒前
123发布了新的文献求助30
9秒前
林乐乐完成签到,获得积分10
9秒前
可以理解完成签到,获得积分10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4614581
求助须知:如何正确求助?哪些是违规求助? 4018748
关于积分的说明 12439646
捐赠科研通 3701503
什么是DOI,文献DOI怎么找? 2041241
邀请新用户注册赠送积分活动 1073983
科研通“疑难数据库(出版商)”最低求助积分说明 957639