NAS-SGAN: A Semi-supervised Generative Adversarial Network Model for Atypia Scoring of Breast Cancer Histopathological Images.

作者
Asha Das,Vinod Kumar Devarampati,Madhu S. Nair
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/jbhi.2021.3131103
摘要

Nuclear atypia scoring (NAS), forms a significant factor in determining individualized treatment plans and also for the prognosis of the disease. Automation of cancer grading using quantitative image-based analysis of histopathological images can circumvent the shortcomings of the prevailing manual grading and can assist the pathologists in cancer diagnosis. However, developing such a robust classifier model require sufficient amount of annotated data, while the labeled histopathological images are scarce and expensive to procure as annotation forms a time-consuming and laborious task. Hence, a semisupervised learning framework combined with the deep neural network based generative adversarial training, that can improve the performance of the classification model with limited annotated data, is proposed in this paper. The proposed NAS-SGAN model consists of discriminator and generator models that are trained in an adversarial manner using both labeled and unlabeled samples. The discriminator model is designed as an unsupervised model stacked over the supervised model sharing the model parameters and learns the data distribution by extracting the discriminative features. The generator model is trained over a stable feature matching objective function following a composite GAN architecture. The novelty of the proposed model is that, we have used a stacked supervised and unsupervised discriminator and a feature matching generator for the NAS-SGAN model and its for the first time the semi-supervised GAN model is explored for the grading of breast cancer. Experimental analysis shows that the proposed model could better discriminate different cancer grades thereby improving the robustness and accuracy of the system, even with limited amount of labeled samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一颗对科研一无所知的鸭蛋完成签到,获得积分10
1秒前
玛卡巴卡发布了新的文献求助10
3秒前
4秒前
小蘑菇应助rubyyoyo采纳,获得10
4秒前
6秒前
研友_8RyzBZ完成签到,获得积分20
6秒前
大模型应助soda采纳,获得10
6秒前
嘿嘿应助winwin采纳,获得10
7秒前
穆振家完成签到,获得积分10
8秒前
9秒前
fhl完成签到,获得积分10
10秒前
芜潼应助可爱邓邓采纳,获得10
11秒前
11秒前
无情的匪发布了新的文献求助10
12秒前
13秒前
zhy完成签到,获得积分10
13秒前
14秒前
李健应助薅住科研的头发采纳,获得10
14秒前
AnonChihaya关注了科研通微信公众号
14秒前
15秒前
结实的安梦完成签到,获得积分10
15秒前
E.W完成签到 ,获得积分10
17秒前
soda发布了新的文献求助10
18秒前
仿生人发布了新的文献求助100
19秒前
Bryan应助晓天采纳,获得10
20秒前
英吉利25发布了新的文献求助10
21秒前
李婉辰完成签到 ,获得积分10
22秒前
WL完成签到 ,获得积分10
23秒前
能吃是猪完成签到,获得积分10
25秒前
25秒前
今非完成签到,获得积分10
25秒前
26秒前
30秒前
dota1dota26完成签到,获得积分10
30秒前
30秒前
31秒前
慕青应助宫城采纳,获得10
31秒前
小马甲应助Dream Luminator采纳,获得10
32秒前
HYI发布了新的文献求助10
34秒前
笨笨紫霜完成签到,获得积分10
36秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Effective Learning and Mental Wellbeing 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976058
求助须知:如何正确求助?哪些是违规求助? 3520294
关于积分的说明 11202245
捐赠科研通 3256804
什么是DOI,文献DOI怎么找? 1798471
邀请新用户注册赠送积分活动 877610
科研通“疑难数据库(出版商)”最低求助积分说明 806496