NAS-SGAN: A Semi-supervised Generative Adversarial Network Model for Atypia Scoring of Breast Cancer Histopathological Images.

作者
Asha Das,Vinod Kumar Devarampati,Madhu S. Nair
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/jbhi.2021.3131103
摘要

Nuclear atypia scoring (NAS), forms a significant factor in determining individualized treatment plans and also for the prognosis of the disease. Automation of cancer grading using quantitative image-based analysis of histopathological images can circumvent the shortcomings of the prevailing manual grading and can assist the pathologists in cancer diagnosis. However, developing such a robust classifier model require sufficient amount of annotated data, while the labeled histopathological images are scarce and expensive to procure as annotation forms a time-consuming and laborious task. Hence, a semisupervised learning framework combined with the deep neural network based generative adversarial training, that can improve the performance of the classification model with limited annotated data, is proposed in this paper. The proposed NAS-SGAN model consists of discriminator and generator models that are trained in an adversarial manner using both labeled and unlabeled samples. The discriminator model is designed as an unsupervised model stacked over the supervised model sharing the model parameters and learns the data distribution by extracting the discriminative features. The generator model is trained over a stable feature matching objective function following a composite GAN architecture. The novelty of the proposed model is that, we have used a stacked supervised and unsupervised discriminator and a feature matching generator for the NAS-SGAN model and its for the first time the semi-supervised GAN model is explored for the grading of breast cancer. Experimental analysis shows that the proposed model could better discriminate different cancer grades thereby improving the robustness and accuracy of the system, even with limited amount of labeled samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
diguohu发布了新的文献求助10
刚刚
大个应助儒雅的翠琴采纳,获得30
1秒前
1秒前
搜集达人应助生动路人采纳,获得10
2秒前
2秒前
打打应助狂暴的蜗牛0713采纳,获得10
3秒前
3秒前
领导范儿应助迷人的千秋采纳,获得10
4秒前
4秒前
许院士发布了新的文献求助10
5秒前
爆米花应助健忘的板凳采纳,获得10
5秒前
Wy发布了新的文献求助10
6秒前
Tsuki完成签到,获得积分10
6秒前
6秒前
赵琪发布了新的文献求助10
6秒前
黄姗姗完成签到,获得积分10
7秒前
科研通AI5应助LM采纳,获得10
7秒前
ding应助黄帅比采纳,获得10
8秒前
8秒前
Liiiii发布了新的文献求助10
8秒前
遗yi发布了新的文献求助10
8秒前
9秒前
XuLiu完成签到,获得积分20
9秒前
bkagyin应助猪猪hero采纳,获得10
9秒前
RC_Wang发布了新的文献求助10
10秒前
10秒前
无奈凡波发布了新的文献求助10
10秒前
11秒前
烟花应助Wy采纳,获得10
11秒前
大个应助LHQ采纳,获得10
11秒前
11秒前
11秒前
12秒前
科研通AI6应助到江南散步采纳,获得10
12秒前
12秒前
冷艳的爆米花完成签到,获得积分10
13秒前
奋斗的曼容完成签到,获得积分10
13秒前
ZG发布了新的文献求助10
13秒前
MeiLing完成签到,获得积分10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
HEAT TRANSFER EQUIPMENT DESIGN Advanced Study Institute Book 500
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Thomas Hobbes' Mechanical Conception of Nature 500
One Health Case Studies: Practical Applications of the Transdisciplinary Approach 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5111526
求助须知:如何正确求助?哪些是违规求助? 4319720
关于积分的说明 13459271
捐赠科研通 4150427
什么是DOI,文献DOI怎么找? 2274173
邀请新用户注册赠送积分活动 1276148
关于科研通互助平台的介绍 1214369