已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

NAS-SGAN: A Semi-supervised Generative Adversarial Network Model for Atypia Scoring of Breast Cancer Histopathological Images.

作者
Asha Das,Vinod Kumar Devarampati,Madhu S. Nair
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/jbhi.2021.3131103
摘要

Nuclear atypia scoring (NAS), forms a significant factor in determining individualized treatment plans and also for the prognosis of the disease. Automation of cancer grading using quantitative image-based analysis of histopathological images can circumvent the shortcomings of the prevailing manual grading and can assist the pathologists in cancer diagnosis. However, developing such a robust classifier model require sufficient amount of annotated data, while the labeled histopathological images are scarce and expensive to procure as annotation forms a time-consuming and laborious task. Hence, a semisupervised learning framework combined with the deep neural network based generative adversarial training, that can improve the performance of the classification model with limited annotated data, is proposed in this paper. The proposed NAS-SGAN model consists of discriminator and generator models that are trained in an adversarial manner using both labeled and unlabeled samples. The discriminator model is designed as an unsupervised model stacked over the supervised model sharing the model parameters and learns the data distribution by extracting the discriminative features. The generator model is trained over a stable feature matching objective function following a composite GAN architecture. The novelty of the proposed model is that, we have used a stacked supervised and unsupervised discriminator and a feature matching generator for the NAS-SGAN model and its for the first time the semi-supervised GAN model is explored for the grading of breast cancer. Experimental analysis shows that the proposed model could better discriminate different cancer grades thereby improving the robustness and accuracy of the system, even with limited amount of labeled samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助123采纳,获得10
1秒前
优秀谷波完成签到,获得积分10
1秒前
执着的以晴完成签到,获得积分10
2秒前
7秒前
CipherSage应助哈哈哈哈哈哈采纳,获得10
7秒前
9秒前
Lucas应助坚定背包采纳,获得10
10秒前
小蘑菇应助LTT采纳,获得10
12秒前
14秒前
英俊的铭应助ina采纳,获得30
16秒前
狸猫不礼貌完成签到,获得积分10
17秒前
zsp完成签到,获得积分10
18秒前
DanSlobin完成签到,获得积分10
19秒前
优秀谷波发布了新的文献求助10
20秒前
可靠的寒风完成签到,获得积分10
22秒前
50g完成签到,获得积分20
22秒前
23秒前
23秒前
123完成签到,获得积分10
24秒前
26秒前
26秒前
ZJX应助米酒汤圆采纳,获得10
27秒前
灵犀发布了新的文献求助10
27秒前
余念安完成签到 ,获得积分10
28秒前
Orange应助冰冰采纳,获得10
28秒前
章鱼完成签到,获得积分10
28秒前
28秒前
orixero应助dild采纳,获得10
28秒前
29秒前
29秒前
29秒前
幽默夜阑发布了新的文献求助10
29秒前
成就若颜发布了新的文献求助10
30秒前
32秒前
科研小秦发布了新的文献求助10
32秒前
团子发布了新的文献求助10
35秒前
35秒前
Fiona发布了新的文献求助10
35秒前
喜庆完成签到 ,获得积分10
37秒前
RCRCRC1995发布了新的文献求助10
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252862
求助须知:如何正确求助?哪些是违规求助? 4416425
关于积分的说明 13749709
捐赠科研通 4288588
什么是DOI,文献DOI怎么找? 2352985
邀请新用户注册赠送积分活动 1349757
关于科研通互助平台的介绍 1309396