NAS-SGAN: A Semi-supervised Generative Adversarial Network Model for Atypia Scoring of Breast Cancer Histopathological Images.

作者
Asha Das,Vinod Kumar Devarampati,Madhu S. Nair
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/jbhi.2021.3131103
摘要

Nuclear atypia scoring (NAS), forms a significant factor in determining individualized treatment plans and also for the prognosis of the disease. Automation of cancer grading using quantitative image-based analysis of histopathological images can circumvent the shortcomings of the prevailing manual grading and can assist the pathologists in cancer diagnosis. However, developing such a robust classifier model require sufficient amount of annotated data, while the labeled histopathological images are scarce and expensive to procure as annotation forms a time-consuming and laborious task. Hence, a semisupervised learning framework combined with the deep neural network based generative adversarial training, that can improve the performance of the classification model with limited annotated data, is proposed in this paper. The proposed NAS-SGAN model consists of discriminator and generator models that are trained in an adversarial manner using both labeled and unlabeled samples. The discriminator model is designed as an unsupervised model stacked over the supervised model sharing the model parameters and learns the data distribution by extracting the discriminative features. The generator model is trained over a stable feature matching objective function following a composite GAN architecture. The novelty of the proposed model is that, we have used a stacked supervised and unsupervised discriminator and a feature matching generator for the NAS-SGAN model and its for the first time the semi-supervised GAN model is explored for the grading of breast cancer. Experimental analysis shows that the proposed model could better discriminate different cancer grades thereby improving the robustness and accuracy of the system, even with limited amount of labeled samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Stageruner完成签到,获得积分10
1秒前
田様应助小白采纳,获得10
2秒前
8秒前
小白完成签到,获得积分10
10秒前
李爱国应助SunGuangkai采纳,获得10
11秒前
DTxiball完成签到,获得积分10
12秒前
桐桐应助正太低音炮采纳,获得10
13秒前
18秒前
领导范儿应助saka采纳,获得10
20秒前
22秒前
22秒前
lyy发布了新的文献求助10
23秒前
SunGuangkai发布了新的文献求助10
23秒前
27秒前
cbf发布了新的文献求助10
28秒前
28秒前
张小南完成签到,获得积分10
29秒前
也行完成签到,获得积分10
31秒前
阳佟念真完成签到,获得积分10
32秒前
33秒前
hzxy_lyt应助lyy采纳,获得10
33秒前
乐乐应助管理想采纳,获得10
35秒前
细心的绿竹完成签到,获得积分20
35秒前
傅飞风完成签到,获得积分10
36秒前
烟花应助obsession采纳,获得10
36秒前
39秒前
傅飞风发布了新的文献求助10
39秒前
舒心的怜翠完成签到 ,获得积分10
40秒前
斯文的苡完成签到,获得积分10
43秒前
wangkun090121发布了新的文献求助10
43秒前
43秒前
43秒前
包容汉堡完成签到 ,获得积分10
44秒前
44秒前
Akim应助摸鱼采纳,获得10
48秒前
管理想发布了新的文献求助10
48秒前
nice1025完成签到,获得积分10
49秒前
无敌反派大美人应助Eunhyo采纳,获得10
49秒前
紫米完成签到,获得积分10
50秒前
碗千岁发布了新的文献求助10
50秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
中国荞麦品种志 1000
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3358826
求助须知:如何正确求助?哪些是违规求助? 2981909
关于积分的说明 8701218
捐赠科研通 2663575
什么是DOI,文献DOI怎么找? 1458528
科研通“疑难数据库(出版商)”最低求助积分说明 675158
邀请新用户注册赠送积分活动 666196