Batch effects in population genomic studies with low‐coverage whole genome sequencing data: Causes, detection and mitigation

生物 人口 推论 深度测序 计算生物学 数据挖掘 基因组 计算机科学 遗传学 人工智能 基因 社会学 人口学
作者
Runyang Nicolas Lou,Nina Overgaard Therkildsen
出处
期刊:Molecular Ecology Resources [Wiley]
卷期号:22 (5): 1678-1692 被引量:24
标识
DOI:10.1111/1755-0998.13559
摘要

Over the past few decades, there has been an explosion in the amount of publicly available sequencing data. This opens new opportunities for combining data sets to achieve unprecedented sample sizes, spatial coverage or temporal replication in population genomic studies. However, a common concern is that nonbiological differences between data sets may generate patterns of variation in the data that can confound real biological patterns, a problem known as batch effects. In this paper, we compare two batches of low-coverage whole genome sequencing (lcWGS) data generated from the same populations of Atlantic cod (Gadus morhua). First, we show that with a "batch-effect-naive" bioinformatic pipeline, batch effects systematically biased our genetic diversity estimates, population structure inference and selection scans. We then demonstrate that these batch effects resulted from multiple technical differences between our data sets, including the sequencing chemistry (four-channel vs. two-channel), sequencing run, read type (single-end vs. paired-end), read length (125 vs. 150 bp), DNA degradation level (degraded vs. well preserved) and sequencing depth (0.8× vs. 0.3× on average). Lastly, we illustrate that a set of simple bioinformatic strategies (such as different read trimming and single nucleotide polymorphism filtering) can be used to detect batch effects in our data and substantially mitigate their impact. We conclude that combining data sets remains a powerful approach as long as batch effects are explicitly accounted for. We focus on lcWGS data in this paper, which may be particularly vulnerable to certain causes of batch effects, but many of our conclusions also apply to other sequencing strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
QDU关闭了QDU文献求助
2秒前
tuzhifengyin完成签到,获得积分10
4秒前
玩命的十三完成签到 ,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
7秒前
张平一完成签到 ,获得积分10
8秒前
IvyLee完成签到,获得积分10
8秒前
加菲丰丰完成签到,获得积分0
9秒前
景代丝发布了新的文献求助10
11秒前
爆米花应助cubicsun采纳,获得10
12秒前
xwh完成签到,获得积分10
12秒前
义气笑容完成签到,获得积分10
15秒前
17秒前
小苗完成签到,获得积分10
20秒前
QDU关闭了QDU文献求助
21秒前
铲铲完成签到,获得积分10
22秒前
酷波er应助shineedou采纳,获得10
22秒前
crescendo完成签到,获得积分10
23秒前
木子木子粒完成签到 ,获得积分10
23秒前
25秒前
暗号完成签到 ,获得积分10
25秒前
观察者小黑完成签到,获得积分10
26秒前
DUAN完成签到,获得积分10
32秒前
寒冷的寻菱完成签到,获得积分10
34秒前
8R60d8应助fall采纳,获得30
34秒前
无花果应助fall采纳,获得10
34秒前
无限尔云发布了新的文献求助10
36秒前
37秒前
albertchan完成签到,获得积分10
38秒前
39秒前
WHHEY完成签到,获得积分20
39秒前
量子星尘发布了新的文献求助10
40秒前
热心市民小红花应助HH采纳,获得30
40秒前
40秒前
超帅连虎发布了新的文献求助10
42秒前
早点毕业完成签到 ,获得积分10
43秒前
SYLH应助WHHEY采纳,获得30
44秒前
李健的小迷弟应助Little2采纳,获得10
44秒前
wanci应助无限尔云采纳,获得10
46秒前
迅速的奇异果完成签到,获得积分10
46秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961020
求助须知:如何正确求助?哪些是违规求助? 3507251
关于积分的说明 11134825
捐赠科研通 3239661
什么是DOI,文献DOI怎么找? 1790305
邀请新用户注册赠送积分活动 872341
科研通“疑难数据库(出版商)”最低求助积分说明 803150