Batch effects in population genomic studies with low‐coverage whole genome sequencing data: Causes, detection and mitigation

生物 人口 推论 深度测序 计算生物学 数据挖掘 基因组 计算机科学 遗传学 人工智能 基因 社会学 人口学
作者
Runyang Nicolas Lou,Nina Overgaard Therkildsen
出处
期刊:Molecular Ecology Resources [Wiley]
卷期号:22 (5): 1678-1692 被引量:24
标识
DOI:10.1111/1755-0998.13559
摘要

Over the past few decades, there has been an explosion in the amount of publicly available sequencing data. This opens new opportunities for combining data sets to achieve unprecedented sample sizes, spatial coverage or temporal replication in population genomic studies. However, a common concern is that nonbiological differences between data sets may generate patterns of variation in the data that can confound real biological patterns, a problem known as batch effects. In this paper, we compare two batches of low-coverage whole genome sequencing (lcWGS) data generated from the same populations of Atlantic cod (Gadus morhua). First, we show that with a "batch-effect-naive" bioinformatic pipeline, batch effects systematically biased our genetic diversity estimates, population structure inference and selection scans. We then demonstrate that these batch effects resulted from multiple technical differences between our data sets, including the sequencing chemistry (four-channel vs. two-channel), sequencing run, read type (single-end vs. paired-end), read length (125 vs. 150 bp), DNA degradation level (degraded vs. well preserved) and sequencing depth (0.8× vs. 0.3× on average). Lastly, we illustrate that a set of simple bioinformatic strategies (such as different read trimming and single nucleotide polymorphism filtering) can be used to detect batch effects in our data and substantially mitigate their impact. We conclude that combining data sets remains a powerful approach as long as batch effects are explicitly accounted for. We focus on lcWGS data in this paper, which may be particularly vulnerable to certain causes of batch effects, but many of our conclusions also apply to other sequencing strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fanfan完成签到,获得积分10
刚刚
1秒前
1秒前
能量球完成签到,获得积分10
2秒前
loong完成签到,获得积分10
5秒前
LIM发布了新的文献求助10
6秒前
科研小白完成签到,获得积分10
7秒前
satchzhao完成签到,获得积分10
10秒前
Jnest完成签到 ,获得积分10
11秒前
jiahao完成签到,获得积分10
12秒前
Yxy完成签到 ,获得积分10
13秒前
13秒前
优美的风完成签到,获得积分10
14秒前
李雪松完成签到 ,获得积分10
18秒前
jiahao发布了新的文献求助10
18秒前
舒服的鱼完成签到 ,获得积分10
19秒前
火花完成签到 ,获得积分10
21秒前
不吃了完成签到 ,获得积分10
22秒前
豆浆来点蒜泥完成签到,获得积分10
24秒前
ptjam完成签到,获得积分10
25秒前
seven完成签到,获得积分10
27秒前
DJ完成签到,获得积分10
28秒前
MHCL完成签到 ,获得积分10
28秒前
29秒前
隐形冷雁应助一招将死你采纳,获得10
29秒前
nanfeng完成签到 ,获得积分10
30秒前
哈哈哈完成签到,获得积分10
33秒前
背后芝麻完成签到,获得积分10
33秒前
小周周完成签到 ,获得积分10
33秒前
大方忆秋完成签到,获得积分10
34秒前
神勇的晟睿完成签到,获得积分10
35秒前
泠璃发布了新的文献求助10
35秒前
小王同学完成签到,获得积分10
36秒前
花无双完成签到,获得积分0
36秒前
六碗鱼完成签到 ,获得积分10
37秒前
gxpjzbg完成签到,获得积分10
39秒前
JXDYYZK完成签到,获得积分10
39秒前
诸葛翼德完成签到,获得积分10
41秒前
44秒前
李爱国应助坚定的可愁采纳,获得10
44秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137115
求助须知:如何正确求助?哪些是违规求助? 2788096
关于积分的说明 7784635
捐赠科研通 2444121
什么是DOI,文献DOI怎么找? 1299763
科研通“疑难数据库(出版商)”最低求助积分说明 625574
版权声明 601011