Assessment of data consistency through cascades of independently recurrent inference machines for fast and robust accelerated MRI reconstruction

计算机科学 欠采样 稳健性(进化) 推论 人工智能 梯度下降 机器学习 流体衰减反转恢复 工作流程 压缩传感 模式识别(心理学) 磁共振成像 人工神经网络 放射科 基因 医学 生物化学 化学 数据库
作者
Dimitrios Karkalousos,Samantha Noteboom,Hanneke E. Hulst,Franciscus M. Vos,Matthan W.A. Caan
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:67 (12): 124001-124001 被引量:4
标识
DOI:10.1088/1361-6560/ac6cc2
摘要

Objective.Machine Learning methods can learn how to reconstruct magnetic resonance images (MRI) and thereby accelerate acquisition, which is of paramount importance to the clinical workflow. Physics-informed networks incorporate the forward model of accelerated MRI reconstruction in the learning process. With increasing network complexity, robustness is not ensured when reconstructing data unseen during training. We aim to embed data consistency (DC) in deep networks while balancing the degree of network complexity. While doing so, we will assess whether either explicit or implicit enforcement of DC in varying network architectures is preferred to optimize performance.Approach.We propose a scheme called Cascades of Independently Recurrent Inference Machines (CIRIM) to assess DC through unrolled optimization. Herein we assess DC both implicitly by gradient descent and explicitly by a designed term. Extensive comparison of the CIRIM to compressed sensing as well as other Machine Learning methods is performed: the End-to-End Variational Network (E2EVN), CascadeNet, KIKINet, LPDNet, RIM, IRIM, and UNet. Models were trained and evaluated on T1-weighted and FLAIR contrast brain data, and T2-weighted knee data. Both 1D and 2D undersampling patterns were evaluated. Robustness was tested by reconstructing 7.5× prospectively undersampled 3D FLAIR MRI data of multiple sclerosis (MS) patients with white matter lesions.Main results.The CIRIM performed best when implicitly enforcing DC, while the E2EVN required an explicit DC formulation. Through its cascades, the CIRIM was able to score higher on structural similarity and PSNR compared to other methods, in particular under heterogeneous imaging conditions. In reconstructing MS patient data, prospectively acquired with a sampling pattern unseen during model training, the CIRIM maintained lesion contrast while efficiently denoising the images.Significance.The CIRIM showed highly promising generalization capabilities maintaining a very fair trade-off between reconstructed image quality and fast reconstruction times, which is crucial in the clinical workflow.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
披风完成签到 ,获得积分20
1秒前
1秒前
li关闭了li文献求助
1秒前
微笑的兔子完成签到,获得积分10
1秒前
2秒前
田超发布了新的文献求助10
3秒前
冯冯发布了新的文献求助10
3秒前
張医铄发布了新的文献求助10
4秒前
青苔发布了新的文献求助10
4秒前
4秒前
Sun发布了新的文献求助10
5秒前
俱乐部完成签到,获得积分10
5秒前
GY发布了新的文献求助10
5秒前
6秒前
郭远发布了新的文献求助10
7秒前
科目三应助半芹采纳,获得10
7秒前
8秒前
8秒前
8秒前
充电宝应助kaan采纳,获得10
9秒前
阳光刺眼完成签到 ,获得积分10
10秒前
MJ发布了新的文献求助10
11秒前
lyric完成签到,获得积分10
13秒前
orixero应助复杂外套采纳,获得10
13秒前
小哇发布了新的文献求助10
13秒前
chenlin应助張医铄采纳,获得10
14秒前
甜甜乌冬面完成签到,获得积分10
14秒前
ssx发布了新的文献求助10
14秒前
852应助GY采纳,获得10
16秒前
16秒前
HB完成签到,获得积分10
17秒前
科研通AI2S应助周老师采纳,获得10
17秒前
Owen应助郭志康采纳,获得10
18秒前
二二完成签到,获得积分10
20秒前
kaan发布了新的文献求助10
20秒前
真君山山长完成签到,获得积分10
21秒前
Lucky燕发布了新的文献求助20
21秒前
22秒前
22秒前
QQ完成签到,获得积分10
22秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3153667
求助须知:如何正确求助?哪些是违规求助? 2804835
关于积分的说明 7861986
捐赠科研通 2462948
什么是DOI,文献DOI怎么找? 1311018
科研通“疑难数据库(出版商)”最低求助积分说明 629429
版权声明 601821