Assessment of data consistency through cascades of independently recurrent inference machines for fast and robust accelerated MRI reconstruction

计算机科学 欠采样 稳健性(进化) 推论 人工智能 梯度下降 机器学习 流体衰减反转恢复 工作流程 压缩传感 模式识别(心理学) 磁共振成像 人工神经网络 放射科 基因 医学 生物化学 化学 数据库
作者
Dimitrios Karkalousos,Samantha Noteboom,Hanneke E. Hulst,Franciscus M. Vos,Matthan W.A. Caan
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:67 (12): 124001-124001 被引量:4
标识
DOI:10.1088/1361-6560/ac6cc2
摘要

Objective.Machine Learning methods can learn how to reconstruct magnetic resonance images (MRI) and thereby accelerate acquisition, which is of paramount importance to the clinical workflow. Physics-informed networks incorporate the forward model of accelerated MRI reconstruction in the learning process. With increasing network complexity, robustness is not ensured when reconstructing data unseen during training. We aim to embed data consistency (DC) in deep networks while balancing the degree of network complexity. While doing so, we will assess whether either explicit or implicit enforcement of DC in varying network architectures is preferred to optimize performance.Approach.We propose a scheme called Cascades of Independently Recurrent Inference Machines (CIRIM) to assess DC through unrolled optimization. Herein we assess DC both implicitly by gradient descent and explicitly by a designed term. Extensive comparison of the CIRIM to compressed sensing as well as other Machine Learning methods is performed: the End-to-End Variational Network (E2EVN), CascadeNet, KIKINet, LPDNet, RIM, IRIM, and UNet. Models were trained and evaluated on T1-weighted and FLAIR contrast brain data, and T2-weighted knee data. Both 1D and 2D undersampling patterns were evaluated. Robustness was tested by reconstructing 7.5× prospectively undersampled 3D FLAIR MRI data of multiple sclerosis (MS) patients with white matter lesions.Main results.The CIRIM performed best when implicitly enforcing DC, while the E2EVN required an explicit DC formulation. Through its cascades, the CIRIM was able to score higher on structural similarity and PSNR compared to other methods, in particular under heterogeneous imaging conditions. In reconstructing MS patient data, prospectively acquired with a sampling pattern unseen during model training, the CIRIM maintained lesion contrast while efficiently denoising the images.Significance.The CIRIM showed highly promising generalization capabilities maintaining a very fair trade-off between reconstructed image quality and fast reconstruction times, which is crucial in the clinical workflow.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
keyanbaicai发布了新的文献求助10
2秒前
cui完成签到,获得积分10
3秒前
yanGGGGGG完成签到 ,获得积分20
3秒前
Biofly526完成签到,获得积分10
5秒前
情怀应助简单采纳,获得10
5秒前
豆子完成签到,获得积分10
6秒前
douzi完成签到,获得积分10
8秒前
和谐的如柏完成签到,获得积分10
8秒前
9秒前
9秒前
xing发布了新的文献求助10
9秒前
10秒前
10秒前
鲜艳的帅哥完成签到,获得积分10
11秒前
jing完成签到,获得积分10
11秒前
12秒前
keyanbaicai完成签到,获得积分10
13秒前
psj完成签到,获得积分10
13秒前
莫道桑榆完成签到,获得积分10
13秒前
he完成签到 ,获得积分10
14秒前
14秒前
苳苳完成签到 ,获得积分20
15秒前
Yangyang完成签到,获得积分10
16秒前
简单发布了新的文献求助10
16秒前
淡然冬灵发布了新的文献求助150
17秒前
陈小桥完成签到,获得积分10
18秒前
乐乐应助摇不滚摇滚采纳,获得10
19秒前
愉快的牛氓完成签到,获得积分10
20秒前
张杠杠完成签到 ,获得积分10
21秒前
吉以寒完成签到,获得积分10
22秒前
22秒前
22秒前
豆子完成签到,获得积分0
23秒前
张聪完成签到,获得积分10
23秒前
璟晔完成签到,获得积分10
24秒前
24秒前
博君一肖完成签到,获得积分10
24秒前
苳苳关注了科研通微信公众号
25秒前
开心蛋挞完成签到 ,获得积分10
25秒前
妖风发布了新的文献求助10
27秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965857
求助须知:如何正确求助?哪些是违规求助? 3511158
关于积分的说明 11156654
捐赠科研通 3245772
什么是DOI,文献DOI怎么找? 1793118
邀请新用户注册赠送积分活动 874230
科研通“疑难数据库(出版商)”最低求助积分说明 804268