Assessment of data consistency through cascades of independently recurrent inference machines for fast and robust accelerated MRI reconstruction

计算机科学 欠采样 稳健性(进化) 推论 人工智能 梯度下降 机器学习 流体衰减反转恢复 工作流程 压缩传感 模式识别(心理学) 磁共振成像 人工神经网络 放射科 基因 医学 生物化学 化学 数据库
作者
Dimitrios Karkalousos,Samantha Noteboom,Hanneke E. Hulst,Franciscus M. Vos,Matthan W.A. Caan
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:67 (12): 124001-124001 被引量:4
标识
DOI:10.1088/1361-6560/ac6cc2
摘要

Objective.Machine Learning methods can learn how to reconstruct magnetic resonance images (MRI) and thereby accelerate acquisition, which is of paramount importance to the clinical workflow. Physics-informed networks incorporate the forward model of accelerated MRI reconstruction in the learning process. With increasing network complexity, robustness is not ensured when reconstructing data unseen during training. We aim to embed data consistency (DC) in deep networks while balancing the degree of network complexity. While doing so, we will assess whether either explicit or implicit enforcement of DC in varying network architectures is preferred to optimize performance.Approach.We propose a scheme called Cascades of Independently Recurrent Inference Machines (CIRIM) to assess DC through unrolled optimization. Herein we assess DC both implicitly by gradient descent and explicitly by a designed term. Extensive comparison of the CIRIM to compressed sensing as well as other Machine Learning methods is performed: the End-to-End Variational Network (E2EVN), CascadeNet, KIKINet, LPDNet, RIM, IRIM, and UNet. Models were trained and evaluated on T1-weighted and FLAIR contrast brain data, and T2-weighted knee data. Both 1D and 2D undersampling patterns were evaluated. Robustness was tested by reconstructing 7.5× prospectively undersampled 3D FLAIR MRI data of multiple sclerosis (MS) patients with white matter lesions.Main results.The CIRIM performed best when implicitly enforcing DC, while the E2EVN required an explicit DC formulation. Through its cascades, the CIRIM was able to score higher on structural similarity and PSNR compared to other methods, in particular under heterogeneous imaging conditions. In reconstructing MS patient data, prospectively acquired with a sampling pattern unseen during model training, the CIRIM maintained lesion contrast while efficiently denoising the images.Significance.The CIRIM showed highly promising generalization capabilities maintaining a very fair trade-off between reconstructed image quality and fast reconstruction times, which is crucial in the clinical workflow.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
壮观醉香发布了新的文献求助10
刚刚
英俊的铭应助爱吃香菜采纳,获得10
刚刚
刚刚
Beclin1发布了新的文献求助10
1秒前
仰望发布了新的文献求助10
1秒前
1秒前
华仔应助koayer采纳,获得10
1秒前
赟糖发布了新的文献求助10
1秒前
爆米花应助BallQ采纳,获得10
2秒前
2秒前
青山发布了新的文献求助10
2秒前
2秒前
芒琪完成签到,获得积分10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
3秒前
科研通AI6应助凉皮亮晶晶采纳,获得10
3秒前
李健应助科研通管家采纳,获得10
3秒前
3秒前
wanci应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
3秒前
zxizx关注了科研通微信公众号
3秒前
xxfsx应助科研通管家采纳,获得10
3秒前
852应助科研通管家采纳,获得10
3秒前
在水一方应助hhwoyebudong采纳,获得10
3秒前
4秒前
我是老大应助科研通管家采纳,获得10
4秒前
在水一方应助科研通管家采纳,获得10
4秒前
zhang发布了新的文献求助10
4秒前
子车茗应助科研通管家采纳,获得10
4秒前
demi完成签到,获得积分10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
田様应助科研通管家采纳,获得10
4秒前
xxfsx应助科研通管家采纳,获得10
4秒前
4秒前
BareBear应助科研通管家采纳,获得10
4秒前
niqiu完成签到 ,获得积分10
4秒前
5秒前
5秒前
xxfsx应助科研通管家采纳,获得10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5519632
求助须知:如何正确求助?哪些是违规求助? 4611732
关于积分的说明 14529813
捐赠科研通 4549100
什么是DOI,文献DOI怎么找? 2492759
邀请新用户注册赠送积分活动 1473857
关于科研通互助平台的介绍 1445710