Bayesian convolutional neural networks for predicting the terrestrial water storage anomalies during GRACE and GRACE-FO gap

桥接(联网) 卷积神经网络 计算机科学 贝叶斯概率 贝叶斯网络 环境科学 蓄水 比例(比率) 人工智能 海洋学 地质学 地图学 计算机网络 入口 地理
作者
Shaoxing Mo,Yulong Zhong,Ehsan Forootan,Nooshin Mehrnegar,Xin Yin,Jichun Wu,Wei Feng,Xiaoqing Shi
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:604: 127244-127244 被引量:78
标识
DOI:10.1016/j.jhydrol.2021.127244
摘要

The Gravity Recovery and Climate Experiment (GRACE) satellite and its successor GRACE Follow-On (GRACE-FO) provide valuable and accurate observations of terrestrial water storage anomalies (TWSAs) at a global scale. However, there is an approximately one-year observation gap of TWSAs between GRACE and GRACE-FO. This poses a challenge for practical applications, as discontinuity in the TWSA observations may introduce significant biases and uncertainties in the hydrological model predictions and consequently mislead decision making. To tackle this challenge, a Bayesian convolutional neural network (BCNN) driven by climatic data is proposed in this study to bridge this gap at a global scale. Enhanced by integrating recent advances in deep learning, including the attention mechanisms and the residual and dense connections, BCNN can automatically and efficiently extract important features for TWSA predictions from multi-source input data. The predicted TWSAs are compared to the hydrological model outputs and three recent TWSA prediction products. The comparison suggests the superior performance of BCNN in providing improved predictions of TWSAs during the gap in particular in the relatively arid regions. The BCNN's ability to identify the extreme dry and wet events during the gap period is further discussed and comprehensively demonstrated by comparing with the precipitation anomalies, drought index, ground/surface water levels. Results indicate that BCNN is capable of offering a reliable solution to maintain the TWSA data continuity and quantify the impacts of climate extremes during the gap.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
64658应助你好纠结伦采纳,获得10
刚刚
xiuxiuxiuxiu完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
zn315315完成签到,获得积分10
1秒前
周舟发布了新的文献求助20
2秒前
2秒前
杉杉来了发布了新的文献求助10
2秒前
3秒前
草莓星发布了新的文献求助10
4秒前
MYFuture完成签到 ,获得积分10
4秒前
欣欣儿完成签到 ,获得积分10
4秒前
amberssy完成签到,获得积分20
4秒前
4秒前
4秒前
5秒前
活泼的觅云完成签到,获得积分10
5秒前
Amy完成签到,获得积分10
5秒前
5秒前
6秒前
Lucas应助lyx1997采纳,获得10
6秒前
6秒前
7秒前
大力怀亦发布了新的文献求助10
7秒前
yyd完成签到,获得积分10
7秒前
orixero应助ddd采纳,获得10
7秒前
浮游应助SWJ采纳,获得10
8秒前
科研通AI6应助唐九采纳,获得10
8秒前
8秒前
坚强的笑天完成签到,获得积分10
9秒前
pluto应助haha采纳,获得10
9秒前
坦率锦程发布了新的文献求助30
9秒前
华仔应助秋雨采纳,获得10
9秒前
9秒前
9秒前
AA完成签到,获得积分10
9秒前
科研通AI2S应助Voskov采纳,获得10
10秒前
pluto应助小肥要努力变肥采纳,获得10
10秒前
杜可欣完成签到,获得积分10
10秒前
10秒前
11秒前
高分求助中
美国药典 2000
Fermented Coffee Market 2000
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Comparing natural with chemical additive production 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5239186
求助须知:如何正确求助?哪些是违规求助? 4406606
关于积分的说明 13714785
捐赠科研通 4274978
什么是DOI,文献DOI怎么找? 2345842
邀请新用户注册赠送积分活动 1342947
关于科研通互助平台的介绍 1300900