亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Bayesian convolutional neural networks for predicting the terrestrial water storage anomalies during GRACE and GRACE-FO gap

桥接(联网) 卷积神经网络 计算机科学 贝叶斯概率 贝叶斯网络 环境科学 蓄水 比例(比率) 人工智能 海洋学 地质学 地图学 计算机网络 入口 地理
作者
Shaoxing Mo,Yulong Zhong,Ehsan Forootan,Nooshin Mehrnegar,Xin Yin,Jichun Wu,Wei Feng,Xiaoqing Shi
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:604: 127244-127244 被引量:78
标识
DOI:10.1016/j.jhydrol.2021.127244
摘要

The Gravity Recovery and Climate Experiment (GRACE) satellite and its successor GRACE Follow-On (GRACE-FO) provide valuable and accurate observations of terrestrial water storage anomalies (TWSAs) at a global scale. However, there is an approximately one-year observation gap of TWSAs between GRACE and GRACE-FO. This poses a challenge for practical applications, as discontinuity in the TWSA observations may introduce significant biases and uncertainties in the hydrological model predictions and consequently mislead decision making. To tackle this challenge, a Bayesian convolutional neural network (BCNN) driven by climatic data is proposed in this study to bridge this gap at a global scale. Enhanced by integrating recent advances in deep learning, including the attention mechanisms and the residual and dense connections, BCNN can automatically and efficiently extract important features for TWSA predictions from multi-source input data. The predicted TWSAs are compared to the hydrological model outputs and three recent TWSA prediction products. The comparison suggests the superior performance of BCNN in providing improved predictions of TWSAs during the gap in particular in the relatively arid regions. The BCNN's ability to identify the extreme dry and wet events during the gap period is further discussed and comprehensively demonstrated by comparing with the precipitation anomalies, drought index, ground/surface water levels. Results indicate that BCNN is capable of offering a reliable solution to maintain the TWSA data continuity and quantify the impacts of climate extremes during the gap.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助George采纳,获得10
9秒前
天天快乐应助现实的乐天采纳,获得10
10秒前
李爱国应助v哈哈采纳,获得10
23秒前
酷酷海豚完成签到,获得积分10
41秒前
47秒前
v哈哈发布了新的文献求助10
52秒前
lemon完成签到,获得积分10
54秒前
科研通AI2S应助科研通管家采纳,获得10
57秒前
赘婿应助lemon采纳,获得10
59秒前
Swear完成签到 ,获得积分10
1分钟前
绾妤完成签到 ,获得积分0
1分钟前
wangfaqing942完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
George发布了新的文献求助10
1分钟前
lemon发布了新的文献求助10
1分钟前
wanci应助George采纳,获得10
1分钟前
v哈哈完成签到 ,获得积分10
1分钟前
sun给sun的求助进行了留言
1分钟前
2分钟前
sun给sun的求助进行了留言
2分钟前
2分钟前
George发布了新的文献求助10
2分钟前
酷炫灰狼发布了新的文献求助10
2分钟前
vitamin完成签到 ,获得积分10
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
NattyPoe应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
充电宝应助酷炫灰狼采纳,获得10
3分钟前
李爱国应助可靠的寒风采纳,获得10
3分钟前
TT完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
zsmj23完成签到 ,获得积分0
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664448
求助须知:如何正确求助?哪些是违规求助? 4861758
关于积分的说明 15107715
捐赠科研通 4823032
什么是DOI,文献DOI怎么找? 2581870
邀请新用户注册赠送积分活动 1536034
关于科研通互助平台的介绍 1494399