已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Bayesian convolutional neural networks for predicting the terrestrial water storage anomalies during GRACE and GRACE-FO gap

计算机科学 环境科学 比例(比率) 气候学 地质学 地图学 地理
作者
Shaoxing Mo,Yulong Zhong,Ehsan Forootan,Nooshin Mehrnegar,Xiong Yin,Jichun Wu,Feng Wang,Xinzheng Shi
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:604: 127244-127244 被引量:25
标识
DOI:10.1016/j.jhydrol.2021.127244
摘要

The Gravity Recovery and Climate Experiment (GRACE) satellite and its successor GRACE Follow-On (GRACE-FO) provide valuable and accurate observations of terrestrial water storage anomalies (TWSAs) at a global scale. However, there is an approximately one-year observation gap of TWSAs between GRACE and GRACE-FO. This poses a challenge for practical applications, as discontinuity in the TWSA observations may introduce significant biases and uncertainties in the hydrological model predictions and consequently mislead decision making. To tackle this challenge, a Bayesian convolutional neural network (BCNN) driven by climatic data is proposed in this study to bridge this gap at a global scale. Enhanced by integrating recent advances in deep learning, including the attention mechanisms and the residual and dense connections, BCNN can automatically and efficiently extract important features for TWSA predictions from multi-source input data. The predicted TWSAs are compared to the hydrological model outputs and three recent TWSA prediction products. The comparison suggests the superior performance of BCNN in providing improved predictions of TWSAs during the gap in particular in the relatively arid regions. The BCNN's ability to identify the extreme dry and wet events during the gap period is further discussed and comprehensively demonstrated by comparing with the precipitation anomalies, drought index, ground/surface water levels. Results indicate that BCNN is capable of offering a reliable solution to maintain the TWSA data continuity and quantify the impacts of climate extremes during the gap.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
晓晓来了完成签到,获得积分10
4秒前
5秒前
6秒前
年幼时完成签到 ,获得积分10
7秒前
聪明的青雪完成签到,获得积分10
8秒前
hcl发布了新的文献求助10
8秒前
8秒前
czt完成签到 ,获得积分10
8秒前
Ava应助Lucille采纳,获得10
8秒前
慕青应助BSDL采纳,获得10
9秒前
11秒前
香香发布了新的文献求助30
11秒前
蒋龙完成签到 ,获得积分10
12秒前
cj完成签到 ,获得积分10
13秒前
14秒前
anmuxi完成签到 ,获得积分10
14秒前
luoyulin发布了新的文献求助10
15秒前
烟花应助小平头啤酒肚采纳,获得10
16秒前
17秒前
果砸发布了新的文献求助10
19秒前
21秒前
Lucille发布了新的文献求助10
22秒前
香蕉觅云应助麦芽糖采纳,获得10
22秒前
22秒前
25秒前
luoyulin完成签到,获得积分10
26秒前
lzx发布了新的文献求助10
27秒前
46464发布了新的文献求助10
29秒前
30秒前
NexusExplorer应助ssk采纳,获得10
31秒前
anmuxi关注了科研通微信公众号
31秒前
完美世界应助kls采纳,获得10
31秒前
不配.应助贺飞风采纳,获得10
32秒前
多情的数据线完成签到,获得积分10
33秒前
33秒前
lili发布了新的文献求助10
35秒前
Chris发布了新的文献求助10
36秒前
田様应助无情的宛儿采纳,获得10
36秒前
36秒前
小平头啤酒肚完成签到,获得积分20
37秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142265
求助须知:如何正确求助?哪些是违规求助? 2793200
关于积分的说明 7805849
捐赠科研通 2449486
什么是DOI,文献DOI怎么找? 1303333
科研通“疑难数据库(出版商)”最低求助积分说明 626823
版权声明 601291