Entity-Oriented Multi-Modal Alignment and Fusion Network for Fake News Detection

计算机科学 情态动词 利用 任务(项目管理) 社会化媒体 人工智能 情报检索 数据挖掘 计算机安全 万维网 经济 化学 管理 高分子化学
作者
Peiguang Li,Xian Sun,Hongfeng Yu,Yu Tian,Fanglong Yao,Guangluan Xu
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:24: 3455-3468 被引量:52
标识
DOI:10.1109/tmm.2021.3098988
摘要

The development of social media enables fake news to be expressed in a multi-modal form, which is disseminated on various social platforms and brings harmful social impacts. To handle this challenge, the fake news detection task was proposed to examine whether false information is contained in multi-modal news. Existing methods exploit various approaches with cross-modal interaction and fusion, which have proven to be effective in detecting common fake news. However, although the description of multi-modal news is narrated around entities, the previously developed methods pay less attention to this characteristic. They do not explore its benefits to the detection task and underperform with respect to the detection of fake news that requires entity-centric comparisons. To make up for this omission, we explore a novel paradigm to detect fake news by aligning and fusing multi-modal entities and propose the Entity-oriented Multi-modal Alignment and Fusion network (EMAF). Our work adopts entity-centric cross-modal interaction, which can reserve semantic integrity and capture the details of multi-modal entities. Specifically, we design an Alignment module with the improved dynamic routing algorithm and introduce a Fusion module based on the comparison, the former aligns and captures the important entities and the latter compares and aggregates entity-centric features. Comparative experiments conducted on multiple public datasets, including Weibo, Twitter, and Reddit, reveal the superiority of the proposed EMAF method, and extensive analytical experiments demonstrate the effectiveness of our proposed modules.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Henry给Arthur的求助进行了留言
刚刚
Gao完成签到,获得积分10
1秒前
尊敬的夏槐完成签到,获得积分10
1秒前
1秒前
猪皮恶人发布了新的文献求助10
2秒前
诡郁发布了新的文献求助10
2秒前
3秒前
3秒前
Li完成签到,获得积分10
4秒前
慢慢完成签到,获得积分10
5秒前
8秒前
123456发布了新的文献求助20
8秒前
诡郁完成签到,获得积分10
12秒前
自觉紫安完成签到 ,获得积分10
13秒前
Orange应助沉默采纳,获得10
16秒前
佳佳爱学习完成签到,获得积分10
19秒前
猪皮恶人完成签到,获得积分10
19秒前
20秒前
Cc.发布了新的文献求助30
21秒前
小蘑菇应助称心的语梦采纳,获得10
22秒前
科研通AI2S应助独特的易形采纳,获得10
22秒前
22秒前
24秒前
24秒前
27秒前
29秒前
可爱的函函应助欢喜大地采纳,获得10
29秒前
Elvira完成签到,获得积分10
30秒前
30秒前
无名老大应助七十三度采纳,获得30
30秒前
沉默发布了新的文献求助10
30秒前
一二三砰发布了新的文献求助10
32秒前
快乐滑板应助miaomiao采纳,获得10
35秒前
刘倩倩发布了新的文献求助10
35秒前
斯文败类应助sam采纳,获得10
36秒前
LYZ发布了新的文献求助10
37秒前
JamesPei应助产电菌菌主采纳,获得10
38秒前
38秒前
40秒前
41秒前
高分求助中
Востребованный временем 2500
Agenda-setting and journalistic translation: The New York Times in English, Spanish and Chinese 1000
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Foucault's Technologies Another Way of Cutting Reality 500
Forensic Chemistry 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3391584
求助须知:如何正确求助?哪些是违规求助? 3002659
关于积分的说明 8804925
捐赠科研通 2689266
什么是DOI,文献DOI怎么找? 1473018
科研通“疑难数据库(出版商)”最低求助积分说明 681311
邀请新用户注册赠送积分活动 674200