Estimation of higher heating values (HHVs) of biomass fuels based on ultimate analysis using machine learning techniques and improved equation

生物量(生态学) 环境科学 估计 工艺工程 计算机科学 工业工程 数学 工程类 统计 系统工程 农学 生物
作者
Abolfazl Sajadi Noushabadi,Amir Dashti,Farhad Ahmadijokani,Jinguang Hu,Amir H. Mohammadi
出处
期刊:Renewable Energy [Elsevier]
卷期号:179: 550-562 被引量:51
标识
DOI:10.1016/j.renene.2021.07.003
摘要

To have a sustainable economy and environment, several countries have widely inclined to the utilization of non-fossil fuels like biomass fuels to produce heat and electricity. The advantage of employing biomass for combustion is emerging as a potential renewable energy, which is regarded as a cheap fuel. Chemical constituents or elements are essential properties in biomass applications, which would be costly and labor-intensive to experimentally estimate them. One of the criteria to evaluate the energy of biomass from an economic perspective is the higher heating value (HHV). In the present work, we have applied multilayer perceptron artificial neural network (MLP-ANN), least-squares support vector machine (LSSVM), ant colony-adaptive neuro-fuzzy inference system (ACO-ANFIS), particle swarm optimization- ANFIS (PSO-ANFIS), genetic algorithm-radial basis function (GA-RBF) and new multivariate nonlinear regression (MNR) as accurate correlation methods to estimate HHVs of biomass fuels based on the ultimate analysis. 535 experimental data were gathered from literature and categorized into eight classes of by-products of fruits, agri-wastes, wood chips/tree species, grasses/leaves/fibrous materials, other waste materials, briquettes/charcoals/pellets, cereal and Industrial wastes. In the term of statistical analysis, average absolute relative deviation (AARD) authenticates that MNR and GA-RBF algorithm with %AARD of 3.5 and 3.4 could be used to estimate HHV. In addition, developed models results were compared to the results of 69 recently previously published empirical correlations and it confirms the reliability of our results. Relevency factor shows the impact of biomass elements on HHV and outlier analysis indicates the unreliable experimental data. The results of this study can be used by researchers to design and optimize biomass combustion systems. • Novel models for estimating HHV of biomass based on elemental analysis are proposed. • State of art machine learning models and an empirical model are proposed. • 535 data of HHV in different biomass classes were gathered. • Our models have higher accuracy than all of the literature models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
凝子老师发布了新的文献求助10
1秒前
1秒前
橙子fy16_发布了新的文献求助10
3秒前
cookie完成签到,获得积分10
3秒前
柒柒的小熊完成签到,获得积分10
4秒前
4秒前
Hello应助萌之痴痴采纳,获得10
5秒前
hahaer完成签到,获得积分10
7秒前
领导范儿应助失眠虔纹采纳,获得10
8秒前
9秒前
Owen应助凝子老师采纳,获得10
12秒前
12秒前
南宫炽滔完成签到 ,获得积分10
14秒前
14秒前
丘比特应助飞羽采纳,获得10
15秒前
沙拉发布了新的文献求助10
15秒前
16秒前
17秒前
椰子糖完成签到 ,获得积分10
18秒前
18秒前
ZHU完成签到,获得积分10
19秒前
阳阳发布了新的文献求助10
20秒前
Raymond应助雪山飞龙采纳,获得10
20秒前
kk发布了新的文献求助10
21秒前
21秒前
22秒前
22秒前
22秒前
23秒前
26秒前
果果瑞宁发布了新的文献求助10
26秒前
wewewew发布了新的文献求助10
26秒前
26秒前
打打应助沙拉采纳,获得10
26秒前
27秒前
诸笑白发布了新的文献求助10
28秒前
丹丹完成签到 ,获得积分10
28秒前
kk完成签到,获得积分10
28秒前
29秒前
caoyy发布了新的文献求助10
29秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849