Estimation of higher heating values (HHVs) of biomass fuels based on ultimate analysis using machine learning techniques and improved equation

生物量(生态学) 环境科学 估计 工艺工程 计算机科学 工业工程 数学 工程类 统计 系统工程 农学 生物
作者
Abolfazl Sajadi Noushabadi,Amir Dashti,Farhad Ahmadijokani,Jinguang Hu,Amir H. Mohammadi
出处
期刊:Renewable Energy [Elsevier]
卷期号:179: 550-562 被引量:51
标识
DOI:10.1016/j.renene.2021.07.003
摘要

To have a sustainable economy and environment, several countries have widely inclined to the utilization of non-fossil fuels like biomass fuels to produce heat and electricity. The advantage of employing biomass for combustion is emerging as a potential renewable energy, which is regarded as a cheap fuel. Chemical constituents or elements are essential properties in biomass applications, which would be costly and labor-intensive to experimentally estimate them. One of the criteria to evaluate the energy of biomass from an economic perspective is the higher heating value (HHV). In the present work, we have applied multilayer perceptron artificial neural network (MLP-ANN), least-squares support vector machine (LSSVM), ant colony-adaptive neuro-fuzzy inference system (ACO-ANFIS), particle swarm optimization- ANFIS (PSO-ANFIS), genetic algorithm-radial basis function (GA-RBF) and new multivariate nonlinear regression (MNR) as accurate correlation methods to estimate HHVs of biomass fuels based on the ultimate analysis. 535 experimental data were gathered from literature and categorized into eight classes of by-products of fruits, agri-wastes, wood chips/tree species, grasses/leaves/fibrous materials, other waste materials, briquettes/charcoals/pellets, cereal and Industrial wastes. In the term of statistical analysis, average absolute relative deviation (AARD) authenticates that MNR and GA-RBF algorithm with %AARD of 3.5 and 3.4 could be used to estimate HHV. In addition, developed models results were compared to the results of 69 recently previously published empirical correlations and it confirms the reliability of our results. Relevency factor shows the impact of biomass elements on HHV and outlier analysis indicates the unreliable experimental data. The results of this study can be used by researchers to design and optimize biomass combustion systems. • Novel models for estimating HHV of biomass based on elemental analysis are proposed. • State of art machine learning models and an empirical model are proposed. • 535 data of HHV in different biomass classes were gathered. • Our models have higher accuracy than all of the literature models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
五六七完成签到,获得积分10
刚刚
布吉岛发布了新的文献求助10
刚刚
nicola完成签到,获得积分10
1秒前
nicola发布了新的文献求助10
3秒前
7秒前
9秒前
Sun1c7发布了新的文献求助10
10秒前
个性的紫菜应助醉烟雨采纳,获得20
12秒前
13秒前
cyf完成签到 ,获得积分10
13秒前
banana完成签到,获得积分10
15秒前
快乐的若灵完成签到 ,获得积分10
15秒前
李健的小迷弟应助nicola采纳,获得10
17秒前
kai chen完成签到 ,获得积分0
18秒前
和谐断天完成签到,获得积分10
19秒前
xml关闭了xml文献求助
20秒前
跳跃的岂愈完成签到,获得积分10
21秒前
是是是WQ完成签到 ,获得积分0
21秒前
张博完成签到 ,获得积分10
22秒前
22秒前
羞月完成签到,获得积分20
23秒前
Suzzne完成签到,获得积分10
23秒前
悦耳亦云完成签到 ,获得积分10
28秒前
tian完成签到,获得积分10
28秒前
羞月发布了新的文献求助10
28秒前
29秒前
科研通AI2S应助Leung采纳,获得10
29秒前
小蘑菇应助愉快捕采纳,获得10
31秒前
CYC完成签到,获得积分10
31秒前
32秒前
32秒前
发的不太好完成签到,获得积分10
32秒前
田様应助安详的雨兰采纳,获得10
32秒前
LILI完成签到,获得积分10
33秒前
34秒前
34秒前
诸岩完成签到,获得积分10
34秒前
35秒前
Jiang湫完成签到 ,获得积分10
35秒前
H-China发布了新的文献求助10
35秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140482
求助须知:如何正确求助?哪些是违规求助? 2791338
关于积分的说明 7798605
捐赠科研通 2447661
什么是DOI,文献DOI怎么找? 1302020
科研通“疑难数据库(出版商)”最低求助积分说明 626402
版权声明 601194