微乳液
材料科学
链式转移
聚合
胶粘剂
乳液聚合
共聚物
环氧树脂
木筏
化学工程
高分子化学
自由基聚合
聚合物
复合材料
工程类
图层(电子)
作者
Sarthik Samanta,Sovan Lal Banerjee,Koushik Bhattacharya,Nikhil K. Singha
标识
DOI:10.1021/acsami.1c08812
摘要
Epoxy-based adhesives have gotten significant attention in the conservation of antiquities and repair or reconstruction of artifacts due to their excellent adhesion strength. However, it has become hard to detect repaired work in artifacts due to the transparent nature of epoxy-based adhesives. Hence, the making of fluorescent adhesives has become an exciting topic for art conservators. Here, we have synthesized a new kind of waterborne epoxy-based fluorescent adhesive decorated with graphene quantum dots (GQDs) via reversible addition–fragmentation chain transfer (RAFT)-mediated surfactant-free miniemulsion polymerization. In this case, a new block copolymer (BCP), poly(1-vinyl-2-pyrrolidone)-block-poly(glycidyl methacrylate), has been synthesized via surfactant-free RAFT-mediated miniemulsion polymerization using a polymerization-induced self-assembly technique. The GQDs were prepared from citric acid by a hydrothermal process, and this was used for making a fluorescence-active BCP/GQD nanocomposite emulsion. The obtained BCP/GQD nanocomposite adhesive was transparent and showed blue fluorescence under ultraviolet–visible light, indicating the easy detection of its mark on the artifacts. The BCP and BCP/GQD emulsions were applied to adhere ceramic and glass substrates, and their adhesion strength was evaluated by lap shear tests. The BCP/GQDs showed better adhesion strength than the BCP only, indicating better adhesive performance. Additionally, the synthesis process was carried out in aqueous media, indicating the sustainability and environment-friendliness of the process. We believe that this kind of new waterborne epoxy-based fluorescent adhesive will provide a new contrivance among art conservators to repair or reconstruct artifacts.
科研通智能强力驱动
Strongly Powered by AbleSci AI