亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Metal artifact reduction in 2D CT images with self-supervised cross-domain learning.

计算机科学 人工智能 模式识别(心理学) 工件(错误) 卷积神经网络 深度学习 计算机视觉 还原(数学) 图像质量 算法 成像体模
作者
Lequan Yu,Zhicheng Zhang,Xiaomeng Li,Hongyi Ren,Wei Zhao,Lei Xing
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:66 (17): 175003-
标识
DOI:10.1088/1361-6560/ac195c
摘要

The presence of metallic implants often introduces severe metal artifacts in the x-ray computed tomography (CT) images, which could adversely influence clinical diagnosis or dose calculation in radiation therapy. In this work, we present a novel deep-learning-based approach for metal artifact reduction (MAR). In order to alleviate the need for anatomically identical CT image pairs (i.e. metal artifact-corrupted CT image and metal artifact-free CT image) for network learning, we propose a self-supervised cross-domain learning framework. Specifically, we train a neural network to restore the metal trace region values in the given metal-free sinogram, where the metal trace is identified by the forward projection of metal masks. We then design a novel filtered backward projection (FBP) reconstruction loss to encourage the network to generate more perfect completion results and a residual-learning-based image refinement module to reduce the secondary artifacts in the reconstructed CT images. To preserve the fine structure details and fidelity of the final MAR image, instead of directly adopting convolutional neural network (CNN)-refined images as output, we incorporate the metal trace replacement into our framework and replace the metal-affected projections of the original sinogram with the prior sinogram generated by the forward projection of the CNN output. We then use the FBP algorithms for final MAR image reconstruction. We conduct an extensive evaluation on simulated and real artifact data to show the effectiveness of our design. Our method produces superior MAR results and outperforms other compelling methods. We also demonstrate the potential of our framework for other organ sites.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
2秒前
平常易烟完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
25秒前
量子星尘发布了新的文献求助10
43秒前
科研通AI5应助blenx采纳,获得10
45秒前
量子星尘发布了新的文献求助10
58秒前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
科研通AI5应助Faint_Dream采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
2分钟前
李爱国应助我为科研狂采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
3分钟前
Faint_Dream发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
小憨憨完成签到 ,获得积分10
3分钟前
Faint_Dream完成签到,获得积分10
3分钟前
研友_VZG7GZ应助Omni采纳,获得10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
4分钟前
Zzz_Carlos完成签到 ,获得积分10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
我为科研狂完成签到,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
Omni发布了新的文献求助10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
tufei完成签到,获得积分10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3660994
求助须知:如何正确求助?哪些是违规求助? 3222200
关于积分的说明 9743994
捐赠科研通 2931798
什么是DOI,文献DOI怎么找? 1605232
邀请新用户注册赠送积分活动 757760
科研通“疑难数据库(出版商)”最低求助积分说明 734503