Single‐Atom‐Layer Catalysis in a MoS2 Monolayer Activated by Long‐Range Ferromagnetism for the Hydrogen Evolution Reaction: Beyond Single‐Atom Catalysis

过电位 单层 催化作用 费米能级 铁磁性 Atom(片上系统) 化学 结晶学 物理化学 电化学 凝聚态物理 电极 有机化学 生物化学 量子力学 计算机科学 物理 电子 嵌入式系统
作者
Hengli Duan,Chao Wang,Guinan Li,Hao Tan,Wei Hu,Liang Cai,Wei Liu,Na Li,Qianqian Ji,Yao Wang,Ying Lü,Wensheng Yan,Fengchun Hu,Wenhua Zhang,Zhihu Sun,Zeming Qi,Li Song,Shiqiang Wei
出处
期刊:Angewandte Chemie [Wiley]
卷期号:133 (13): 7327-7334 被引量:21
标识
DOI:10.1002/ange.202014968
摘要

Abstract Single‐atom‐layer catalysts with fully activated basal‐atoms will provide a solution to the low loading‐density bottleneck of single‐atom catalysts. Herein, we activate the majority of the basal sites of monolayer MoS 2 , by doping Co ions to induce long‐range ferromagnetic order. This strategy, as revealed by in situ synchrotron radiation microscopic infrared spectroscopy and electrochemical measurements, could activate more than 50 % of the originally inert basal‐plane S atoms in the ferromagnetic monolayer for the hydrogen evolution reaction (HER). Consequently, on a single monolayer of ferromagnetic MoS 2 measured by on‐chip micro‐cell, a current density of 10 mA cm −2 could be achieved at the overpotential of 137 mV, corresponding to a mass activity of 28, 571 Ag −1 , which is two orders of magnitude higher than the multilayer counterpart. Its exchange current density of 75 μA cm −2 also surpasses most other MoS 2 ‐based catalysts. Experimental results and theoretical calculations show the activation of basal plane S atoms arises from an increase of electronic density around the Fermi level, promoting the H adsorption ability of basal‐plane S atoms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
就是我发布了新的文献求助10
刚刚
1秒前
1秒前
小蘑菇应助刘鹏宇采纳,获得10
1秒前
一一完成签到,获得积分10
2秒前
南城雨落发布了新的文献求助10
2秒前
杜嘟嘟发布了新的文献求助30
3秒前
leave完成签到,获得积分10
3秒前
Cxyyyl完成签到 ,获得积分10
3秒前
芒竹完成签到,获得积分10
4秒前
乐山乐水完成签到,获得积分20
4秒前
4秒前
阿飞完成签到,获得积分10
5秒前
5秒前
pappper完成签到,获得积分10
5秒前
彭于晏应助01259采纳,获得30
5秒前
乐观的小鸡完成签到,获得积分10
6秒前
6秒前
传奇3应助好玩和有趣采纳,获得10
7秒前
js完成签到,获得积分10
7秒前
乐山乐水发布了新的文献求助10
7秒前
8秒前
明理的蜗牛完成签到,获得积分10
9秒前
9秒前
jiayouYi完成签到,获得积分10
10秒前
sunzhiyu233完成签到,获得积分20
10秒前
怡然菲音发布了新的文献求助10
10秒前
袁访天完成签到,获得积分10
11秒前
英姑应助RONG采纳,获得10
11秒前
11秒前
12秒前
冷酷尔琴发布了新的文献求助10
13秒前
13秒前
13秒前
kai_完成签到,获得积分10
14秒前
Tikh完成签到,获得积分10
14秒前
充电宝应助通~采纳,获得10
14秒前
科研雷锋发布了新的文献求助10
15秒前
坚强亦丝应助香蕉初瑶采纳,获得10
15秒前
wormzjl完成签到,获得积分10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740