Pd-Promoted Co2NiO4 with lattice Co O Ni and interfacial Pd O activation for highly efficient methane oxidation

催化作用 甲烷 合理设计 甲烷厌氧氧化 金属 化学工程 材料科学 氧气 化学 纳米技术 冶金 有机化学 工程类
作者
Juxia Xiong,Ji Yang,Xiao Chi,Kang Wu,Linghe Song,Li Tan,Yun Zhao,Haomin Huang,Peirong Chen,Junliang Wu,Limin Chen,Mingli Fu,Daiqi Ye
出处
期刊:Applied Catalysis B-environmental [Elsevier]
卷期号:292: 120201-120201 被引量:56
标识
DOI:10.1016/j.apcatb.2021.120201
摘要

Nowadays, developing advanced Pd-based catalysts with highly efficient catalytic activity and long-term stability still presents profound challenges. Here, we prepare a novel Pd-Co2NiO4 catalysts with PdOx species simultaneously embedded into Co2NiO4 lattice and decorated on Co2NiO4 surface in high dispersion. The Pd-Co2NiO4 catalysts shows the attractive activity and excellent stability for methane complete oxidation. Based on the experimental and theoretical analysis, the enhanced methane oxidation activity of Pd-Co2NiO4 catalysts is mainly ascribed to two factors. PdOx species incorporated into Co2NiO4 lattice modulates effectively the electronic structure of catalysts, which promotes the electron transfer between Co 3d-O 2p hybrid orbital and Ni eg orbital in Co2NiO4 and thus benefits the activation of adjacent lattice O in CoONi hybridization, resulting in the rapid migration and activation of lattice oxygen in Co2NiO4 support (Factor I). In addition, the deposition of PdOx species on the Co2NiO4 surface tunes the metal-support interface interactions and promotes the activation of PdO bonds, giving rise to more facile CH4 activation ability (Factor Ⅱ). Collectively, the enhanced catalytic properties of the Pd-Co2NiO4 catalysts originated from the activation of lattice oxygen in the Pd-regulated CoONi hybridization and decorated PdOx sites. This study presented here not only gives further insight into the metal-support electronic interaction, but paves the promising way for the rational fabrication of next-generation environmental catalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慈祥的寒烟完成签到,获得积分20
3秒前
3秒前
俭朴的跳跳糖完成签到 ,获得积分10
3秒前
3秒前
4秒前
4秒前
香蕉觅云应助啦啦啦采纳,获得10
5秒前
唐帅发布了新的文献求助10
5秒前
7秒前
仵一发布了新的文献求助10
8秒前
8秒前
zqq发布了新的文献求助10
9秒前
9秒前
小文子完成签到,获得积分10
9秒前
欢呼忆丹完成签到 ,获得积分10
10秒前
10秒前
splash发布了新的文献求助10
10秒前
12秒前
ling发布了新的文献求助10
13秒前
科研通AI2S应助yiw采纳,获得30
13秒前
研友_VZG7GZ应助淡定的曼易采纳,获得100
14秒前
Q123ba叭发布了新的文献求助10
14秒前
Roche完成签到,获得积分10
15秒前
16秒前
16秒前
刘晓楠完成签到 ,获得积分10
18秒前
ttm1983完成签到,获得积分10
19秒前
1257应助qxz采纳,获得10
20秒前
等乙天发布了新的文献求助30
20秒前
22秒前
22秒前
23秒前
23秒前
AN发布了新的文献求助10
24秒前
24秒前
Sunny驳回了sissi应助
27秒前
28秒前
沸点发布了新的文献求助30
28秒前
29秒前
29秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136607
求助须知:如何正确求助?哪些是违规求助? 2787645
关于积分的说明 7782462
捐赠科研通 2443707
什么是DOI,文献DOI怎么找? 1299370
科研通“疑难数据库(出版商)”最低求助积分说明 625429
版权声明 600954