已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

FedMask

计算机科学 移动设备 深度学习 人工智能 带宽(计算) 计算 人工神经网络 二进制数 深层神经网络 分布式计算 移动计算 数据建模 机器学习 计算机工程 计算机网络 算法 算术 数据库 操作系统 数学
作者
Ang Li,Jingwei Sun,Xiao Zeng,Mi Zhang,Hai Li,Yiran Chen
标识
DOI:10.1145/3485730.3485929
摘要

Recent advancements in deep neural networks (DNN) enabled various mobile deep learning applications. However, it is technically challenging to locally train a DNN model due to limited data on devices like mobile phones. Federated learning (FL) is a distributed machine learning paradigm which allows for model training on decentralized data residing on devices without breaching data privacy. Hence, FL becomes a natural choice for deploying on-device deep learning applications. However, the data residing across devices is intrinsically statistically heterogeneous (i.e., non-IID data distribution) and mobile devices usually have limited communication bandwidth to transfer local updates. Such statistical heterogeneity and communication bandwidth limit are two major bottlenecks that hinder applying FL in practice. In addition, considering mobile devices usually have limited computational resources, improving computation efficiency of training and running DNNs is critical to developing on-device deep learning applications. In this paper, we present FedMask - a communication and computation efficient FL framework. By applying FedMask, each device can learn a personalized and structured sparse DNN, which can run efficiently on devices. To achieve this, each device learns a sparse binary mask (i.e., 1 bit per network parameter) while keeping the parameters of each local model unchanged; only these binary masks will be communicated between the server and the devices. Instead of learning a shared global model in classic FL, each device obtains a personalized and structured sparse model that is composed by applying the learned binary mask to the fixed parameters of the local model. Our experiments show that compared with status quo approaches, FedMask improves the inference accuracy by 28.47% and reduces the communication cost and the computation cost by 34.48X and 2.44X. FedMask also achieves 1.56X inference speedup and reduces the energy consumption by 1.78X.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
4秒前
呵呵哒发布了新的文献求助10
5秒前
郜雨寒发布了新的文献求助10
5秒前
123发布了新的文献求助10
6秒前
中中发布了新的文献求助10
6秒前
7秒前
兔子完成签到 ,获得积分10
8秒前
10秒前
12秒前
Owen应助郜雨寒采纳,获得10
12秒前
sci来发布了新的文献求助10
13秒前
15秒前
闪闪的以山完成签到 ,获得积分10
16秒前
18秒前
18秒前
醉熏的宛发布了新的文献求助10
19秒前
24秒前
Hello应助BBC采纳,获得10
25秒前
斯文明杰发布了新的文献求助10
26秒前
SSCI6688发布了新的文献求助10
26秒前
CodeCraft应助简单采纳,获得10
27秒前
MUSTer一一完成签到 ,获得积分10
28秒前
科目三应助Deon采纳,获得10
32秒前
落寞的凝安完成签到 ,获得积分10
33秒前
穆紫应助sci来采纳,获得10
34秒前
科研通AI2S应助煜晟采纳,获得10
36秒前
36秒前
华仔应助heqing采纳,获得10
37秒前
搜集达人应助张凤采纳,获得10
38秒前
39秒前
41秒前
舒适靖柏发布了新的文献求助10
41秒前
42秒前
42秒前
gg发布了新的文献求助10
43秒前
John完成签到 ,获得积分10
44秒前
44秒前
高分求助中
좌파는 어떻게 좌파가 됐나:한국 급진노동운동의 형성과 궤적 2500
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Cognitive linguistics critical concepts in linguistics 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
氟盐冷却高温堆非能动余热排出性能及安全分析研究 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3052195
求助须知:如何正确求助?哪些是违规求助? 2709441
关于积分的说明 7417177
捐赠科研通 2353927
什么是DOI,文献DOI怎么找? 1245692
科研通“疑难数据库(出版商)”最低求助积分说明 605848
版权声明 595870