Abstract 12112: Near Infrared Spectroscopic Characterization of Cardiac and Renal Fibrosis

医学 纤维化 心脏纤维化 病理 内科学 心脏病学
作者
John A. Adegoke,Callum Gassner,Isaac O. Afara,Varun Sharma,Sheila K. Patel,Kamila Kochan,Louise M. Burrell,Jai Raman,Bayden R. Wood
出处
期刊:Circulation [Ovid Technologies (Wolters Kluwer)]
卷期号:144 (Suppl_1)
标识
DOI:10.1161/circ.144.suppl_1.12112
摘要

Introduction: Fibrosis is significantly associated with nearly all forms of heart and kidney disease. Clinical diagnosis of fibrosis is currently reliant on conventional methods that do not have the sensitivity and specificity required for effective diagnosis. Hypothesis: An handheld portable near-infrared (NIR) spectrometer, usable intraoperatively coupled to machine learning algorithms can discriminate between fibrotic and healthy cardiac and renal tissue. We sought to validate this in an animal model. Methods: 10 Male Sprague Dawley rats (SDR) with either induced cardiac (SDR-H) and renal (SDR-K) fibrosis (n=5) compare to normal controls (n=5). Hearts from all rats were used as tissue screening in model validation as they contain a high amount of collagen. Multiple tissue samples were harvested from SDR-K ( n fibrosis = 12, n control = 4) and SDR-H ( n fibrosis = 12, n control = 4) groups. NIR spectra (1350 - 2500 nm) were acquired from all tissue sections. Results: Stained sections showed insignificant differences between the fibrotic SDR-H and their corresponding controls as collagen fibrils dominated both groups. SDR-K showed distinguishable features between examined groups. NIR absorption at 1509, 1725, 2055, and 2306 nm were found to be highly indicative of fibrosis (Figure1). PCA (57% explained variance) and PLS-DA (sensitivity: 96%) showed excellent discrimination for SDR-K groups while the heart shows no meaningful discrimination for SDR-H groups. SVM and LR analysis corroborated these results by achieving a 98% classification accuracy for SDR-K and no discrimination for SDR-H. All machine learning models were cross-validated with outcomes of histological staining to establish a robust interpretation and underpin their pathological meanings. Conclusions: NIR accurately diagnoses cardiac and renal fibrosis in rats model. There is potential for this technology to be translated into an intraoperative instrument for tissue diagnosis

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
优雅的千雁完成签到,获得积分10
7秒前
落红禹03完成签到 ,获得积分10
7秒前
Alisha完成签到,获得积分10
10秒前
dada完成签到 ,获得积分10
10秒前
闻屿完成签到,获得积分10
11秒前
15秒前
zeannezg完成签到 ,获得积分10
15秒前
16秒前
小蘑菇完成签到 ,获得积分10
17秒前
活力的镜子完成签到,获得积分10
18秒前
噗噗蝶pd发布了新的文献求助10
21秒前
chiyudoubao发布了新的文献求助10
21秒前
27秒前
猪猪hero完成签到,获得积分10
28秒前
小木虫发布了新的文献求助10
31秒前
VDC应助抗体药物偶联采纳,获得30
34秒前
白嫖论文完成签到 ,获得积分10
37秒前
电子屎壳郎完成签到,获得积分10
44秒前
44秒前
lielizabeth完成签到 ,获得积分0
46秒前
moonlin发布了新的文献求助10
50秒前
77完成签到 ,获得积分10
51秒前
理想完成签到,获得积分10
1分钟前
轩辕德地完成签到,获得积分10
1分钟前
平淡的发卡完成签到 ,获得积分10
1分钟前
科研通AI2S应助天真映菡采纳,获得10
1分钟前
花痴的白昼完成签到 ,获得积分10
1分钟前
呆萌的小海豚完成签到,获得积分10
1分钟前
这个硬盘完成签到 ,获得积分10
1分钟前
天真映菡完成签到,获得积分10
1分钟前
汉堡包应助简辰采纳,获得10
1分钟前
风信子完成签到,获得积分10
1分钟前
1分钟前
yxq完成签到 ,获得积分10
1分钟前
pluto应助不爱吃醋采纳,获得10
1分钟前
Lucas应助优秀的尔风采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3455715
求助须知:如何正确求助?哪些是违规求助? 3050954
关于积分的说明 9023216
捐赠科研通 2739527
什么是DOI,文献DOI怎么找? 1502908
科研通“疑难数据库(出版商)”最低求助积分说明 694628
邀请新用户注册赠送积分活动 693432