Low‐dose CT reconstruction with Noise2Noise network and testing‐time fine‐tuning

迭代重建 人工智能 计算机科学 深度学习 卷积神经网络 降噪 图像质量 计算机视觉 投影(关系代数) 模式识别(心理学) 算法
作者
Dufan Wu,Kyungsang Kim,Quanzheng Li
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.15101
摘要

Deep learning-based image denoising and reconstruction methods demonstrated promising performance on low-dose CT imaging in recent years. However, most existing deep learning-based low-dose CT reconstruction methods require normal-dose images for training. Sometimes such clean images do not exist such as for dynamic CT imaging or very large patients. The purpose of this work is to develop a low-dose CT image reconstruction algorithm based on deep learning which does not need clean images for training.In this paper, we proposed a novel reconstruction algorithm where the image prior was expressed via the Noise2Noise network, whose weights were fine-tuned along with the image during the iterative reconstruction. The Noise2Noise network built a self-consistent loss by projection data splitting and mapping the corresponding filtered backprojection (FBP) results to each other with a deep neural network. Besides, the network weights are optimized along with the image to be reconstructed under an alternating optimization scheme. In the proposed method, no clean image is needed for network training and the testing-time fine-tuning leads to optimization for each reconstruction.We used the 2016 Low-dose CT Challenge dataset to validate the feasibility of the proposed method. We compared its performance to several existing iterative reconstruction algorithms that do not need clean training data, including total variation, non-local mean, convolutional sparse coding, and Noise2Noise denoising. It was demonstrated that the proposed Noise2Noise reconstruction achieved better RMSE, SSIM and texture preservation compared to the other methods. The performance is also robust against the different noise levels, hyperparameters, and network structures used in the reconstruction. Furthermore, we also demonstrated that the proposed methods achieved competitive results without any pre-training of the network at all, that is, using randomly initialized network weights during testing. The proposed iterative reconstruction algorithm also has empirical convergence with and without network pre-training.The proposed Noise2Noise reconstruction method can achieve promising image quality in low-dose CT image reconstruction. The method works both with and without pre-training, and only noisy data are required for pre-training.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wlggg关注了科研通微信公众号
2秒前
chang发布了新的文献求助10
3秒前
5秒前
科研通AI2S应助粗暴的遥采纳,获得10
6秒前
李健应助竹外桃花采纳,获得10
6秒前
7秒前
8秒前
Helen发布了新的文献求助10
8秒前
wuzhi完成签到,获得积分10
9秒前
Enma发布了新的文献求助10
10秒前
幸福的雪枫完成签到 ,获得积分10
10秒前
转身风飘去完成签到,获得积分10
12秒前
12秒前
13秒前
zzz发布了新的文献求助10
14秒前
基尼胎没发布了新的文献求助10
14秒前
Akim应助long采纳,获得10
15秒前
李小小发布了新的文献求助10
16秒前
17秒前
18秒前
WTC完成签到 ,获得积分10
19秒前
Jasper应助cxl666采纳,获得10
20秒前
liuniuniu完成签到,获得积分10
21秒前
月颜完成签到,获得积分20
21秒前
jl发布了新的文献求助10
22秒前
传奇3应助缥缈耷采纳,获得10
23秒前
Hello应助杰森斯坦虎采纳,获得10
23秒前
24秒前
25秒前
wlggg完成签到,获得积分10
25秒前
月yue关注了科研通微信公众号
27秒前
猪猪完成签到,获得积分10
28秒前
马吉克wang完成签到,获得积分10
28秒前
夏天的雪花还能闯天涯吗完成签到,获得积分10
29秒前
zzz完成签到 ,获得积分10
29秒前
scq完成签到 ,获得积分10
30秒前
Owen应助基尼胎没采纳,获得10
31秒前
年青的青年完成签到,获得积分10
31秒前
医学僧完成签到,获得积分10
32秒前
化学小学生完成签到,获得积分10
32秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141451
求助须知:如何正确求助?哪些是违规求助? 2792465
关于积分的说明 7802933
捐赠科研通 2448664
什么是DOI,文献DOI怎么找? 1302761
科研通“疑难数据库(出版商)”最低求助积分说明 626650
版权声明 601237