Low‐dose CT reconstruction with Noise2Noise network and testing‐time fine‐tuning

迭代重建 人工智能 计算机科学 深度学习 卷积神经网络 降噪 图像质量 计算机视觉 投影(关系代数) 模式识别(心理学) 算法
作者
Dufan Wu,Kyungsang Kim,Quanzheng Li
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.15101
摘要

Deep learning-based image denoising and reconstruction methods demonstrated promising performance on low-dose CT imaging in recent years. However, most existing deep learning-based low-dose CT reconstruction methods require normal-dose images for training. Sometimes such clean images do not exist such as for dynamic CT imaging or very large patients. The purpose of this work is to develop a low-dose CT image reconstruction algorithm based on deep learning which does not need clean images for training.In this paper, we proposed a novel reconstruction algorithm where the image prior was expressed via the Noise2Noise network, whose weights were fine-tuned along with the image during the iterative reconstruction. The Noise2Noise network built a self-consistent loss by projection data splitting and mapping the corresponding filtered backprojection (FBP) results to each other with a deep neural network. Besides, the network weights are optimized along with the image to be reconstructed under an alternating optimization scheme. In the proposed method, no clean image is needed for network training and the testing-time fine-tuning leads to optimization for each reconstruction.We used the 2016 Low-dose CT Challenge dataset to validate the feasibility of the proposed method. We compared its performance to several existing iterative reconstruction algorithms that do not need clean training data, including total variation, non-local mean, convolutional sparse coding, and Noise2Noise denoising. It was demonstrated that the proposed Noise2Noise reconstruction achieved better RMSE, SSIM and texture preservation compared to the other methods. The performance is also robust against the different noise levels, hyperparameters, and network structures used in the reconstruction. Furthermore, we also demonstrated that the proposed methods achieved competitive results without any pre-training of the network at all, that is, using randomly initialized network weights during testing. The proposed iterative reconstruction algorithm also has empirical convergence with and without network pre-training.The proposed Noise2Noise reconstruction method can achieve promising image quality in low-dose CT image reconstruction. The method works both with and without pre-training, and only noisy data are required for pre-training.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
毕春宇发布了新的文献求助10
1秒前
一丁雨完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
6秒前
乐乐发布了新的文献求助10
6秒前
Vivianne发布了新的文献求助10
10秒前
大胆班完成签到,获得积分10
12秒前
乐乐完成签到,获得积分20
13秒前
13秒前
14秒前
Qing完成签到,获得积分10
14秒前
14秒前
Cupid完成签到,获得积分10
16秒前
17秒前
哈哈哈发布了新的文献求助30
17秒前
18秒前
张成协发布了新的文献求助10
19秒前
MMX完成签到,获得积分10
19秒前
zym999999发布了新的文献求助10
20秒前
云岫完成签到 ,获得积分10
20秒前
清秀的靖雁应助清玖采纳,获得10
20秒前
21秒前
22秒前
zhang完成签到,获得积分10
22秒前
26秒前
嵩嵩发布了新的文献求助10
27秒前
mmmmm完成签到,获得积分10
28秒前
诸道罡发布了新的文献求助10
29秒前
cxm666发布了新的文献求助10
29秒前
熊i发布了新的文献求助10
31秒前
NexusExplorer应助张成协采纳,获得10
31秒前
深情安青应助科研通管家采纳,获得10
31秒前
华仔应助科研通管家采纳,获得10
32秒前
32秒前
32秒前
地表飞猪应助科研通管家采纳,获得10
32秒前
32秒前
32秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958051
求助须知:如何正确求助?哪些是违规求助? 3504213
关于积分的说明 11117431
捐赠科研通 3235582
什么是DOI,文献DOI怎么找? 1788318
邀请新用户注册赠送积分活动 871204
科研通“疑难数据库(出版商)”最低求助积分说明 802511