3D hierarchical dual-attention fully convolutional networks with hybrid losses for diverse glioma segmentation

计算机科学 分割 胶质瘤 人工智能 块(置换群论) 卷积神经网络 市场细分 深度学习 功能(生物学) 特征(语言学) 磁共振成像 模式识别(心理学) 机器学习 放射科 医学 几何学 哲学 进化生物学 业务 语言学 营销 癌症研究 数学 生物
作者
Deting Kong,Xiyu Liu,Yan Wang,Dengwang Li,Jie Xue
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:237: 107692-107692 被引量:11
标识
DOI:10.1016/j.knosys.2021.107692
摘要

Accurate glioma segmentation based on magnetic resonance imaging (MRI) is crucial for assisting with the diagnosis of gliomas. However, the manual delineation of all diverse gliomas, including the whole tumors (WTs), tumor cores (TCs) and enhancing tumors (ETs) of high-grade gliomas (HGG) and low-grade gliomas (LGG), is laborious and often error prone. The different phenotypes, sizes and locations of gliomas in/between patients make automatic segmentation a challenging task. To alleviate these challenges, in this paper, we propose a 3D fully convolutional network (FCN) with a dual-attention (i.e., global and local attention) mechanism to segment diverse gliomas simultaneously. The global attention mechanism (GAM) focuses on segmenting gliomas precisely by segment discrimination learning with a weight-allocated segmentation loss function to alleviate biased results obtained for tumors with large sizes and an adversarial loss function to refine the segmentations of areas with low contrast relative to their neighbors. The local attention mechanism (LAM) constantly revises effective features with the guidance of a united loss function at different levels. Furthermore, we present a hierarchical feature module (HFM) with a weight-sharing block to obtain more information about the boundaries of different scales, aiming at enhancing the learning of ambiguous tumor outlines. According to experimental results, our network outperforms ten state-of-the-art methods. Ablation studies show that the proposed model components are effective for diverse glioma segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sssnesstudy完成签到,获得积分10
刚刚
wucl1990发布了新的文献求助10
刚刚
刚刚
刚刚
1秒前
1秒前
顺利张发布了新的文献求助10
1秒前
Eber完成签到,获得积分20
1秒前
科研通AI2S应助egg采纳,获得10
2秒前
请不要喊我回答问题完成签到 ,获得积分10
2秒前
柒柒完成签到,获得积分10
3秒前
3秒前
3秒前
狂炫AD钙奶完成签到,获得积分10
3秒前
hahaha完成签到,获得积分10
4秒前
失眠觅云发布了新的文献求助10
6秒前
6秒前
Singularity举报张念杰求助涉嫌违规
7秒前
111111ww完成签到,获得积分10
7秒前
za==发布了新的文献求助10
7秒前
Aria_chao发布了新的文献求助10
7秒前
Eber发布了新的文献求助20
7秒前
8秒前
yuanjun完成签到,获得积分10
8秒前
kano发布了新的文献求助10
9秒前
111111ww发布了新的文献求助10
10秒前
小雅_angle完成签到,获得积分10
10秒前
10秒前
小马甲应助add采纳,获得10
11秒前
wucl1990完成签到,获得积分10
12秒前
CodeCraft应助胡巴采纳,获得10
14秒前
yangxt-iga完成签到,获得积分20
15秒前
kk发布了新的文献求助10
15秒前
清爽代丝关注了科研通微信公众号
15秒前
英俊的铭应助梨涡采纳,获得10
15秒前
自然醒醒关注了科研通微信公众号
16秒前
赘婿应助那只兔子采纳,获得10
16秒前
北方有俞完成签到,获得积分10
16秒前
17秒前
17秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3306839
求助须知:如何正确求助?哪些是违规求助? 2940658
关于积分的说明 8497925
捐赠科研通 2614820
什么是DOI,文献DOI怎么找? 1428526
科研通“疑难数据库(出版商)”最低求助积分说明 663442
邀请新用户注册赠送积分活动 648263