Machine learning techniques for diagnosis of alzheimer disease, mild cognitive disorder, and other types of dementia

机器学习 人工智能 计算机科学 痴呆 深度学习 卷积神经网络 支持向量机 杠杆(统计) 人工神经网络 疾病 医学 病理
作者
Golrokh Mirzaei,Hojjat Adeli
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:72: 103293-103293 被引量:91
标识
DOI:10.1016/j.bspc.2021.103293
摘要

Alzheimer’s disease (AD) is one of the most common form of dementia which mostly affects elderly people. AD identification in early stages is a difficult task in medical practice and there is still no biomarker known to be precise in detection of AD in early stages. Also, AD is not a curable disease at this time and there is a high failure rate in clinical trials for AD drugs. Researchers are making efforts to find ways in early detection of AD to help in slowing down its progression. This paper reviews the state-of-the-art research on machine learning techniques used for detection and classification of AD with a focus on neuroimaging and primarily journal articles published since 2016. These techniques include Support Vector Machine, Random forest, Convolutional Neural Network, K-means, among others. This review suggests that there is no single best approach; however, deep learning techniques such as Convolutional Neural Networks appear to be promising for diagnosis of AD, especially considering that they can leverage transfer learning which overcomes the limitations of availability of a large number of medical images. Research is still on-going to provide an accurate and efficient approach for diagnosis and prediction of AD. In recent years, a number of new and powerful supervised machine learning and classification algorithms have been developed such as the Enhanced Probabilistic Neural Network, Neural Dynamic Classification algorithm, Dynamic Ensemble Learning Algorithm, and Finite Element Machine for fast learning. Applications of these algorithms for diagnosis of AD have yet to be explored.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助欢喜的跳跳糖采纳,获得10
1秒前
3秒前
大模型应助wucl1990采纳,获得10
3秒前
4秒前
5秒前
6秒前
赘婿应助医大好学生采纳,获得10
7秒前
yzz完成签到,获得积分20
8秒前
8秒前
CodeCraft应助HHHSean采纳,获得30
8秒前
张鹏程发布了新的文献求助10
9秒前
王九八发布了新的文献求助10
9秒前
擦撒擦擦完成签到,获得积分10
9秒前
ybmdyr完成签到,获得积分20
9秒前
99v587完成签到,获得积分10
10秒前
10秒前
10秒前
半夏发布了新的文献求助10
11秒前
qianqian发布了新的文献求助10
11秒前
Or1ll完成签到,获得积分10
12秒前
pluto应助苏雅霏采纳,获得10
13秒前
13秒前
科研dog发布了新的文献求助10
14秒前
钫人完成签到,获得积分10
14秒前
wucl1990发布了新的文献求助10
14秒前
思源应助Atlantic采纳,获得10
16秒前
17秒前
彭于彦祖应助绍兴采纳,获得20
19秒前
香蕉觅云应助santiago采纳,获得10
19秒前
华仔应助葡萄柚绿茶采纳,获得10
20秒前
感动忆霜完成签到,获得积分20
20秒前
wucl1990完成签到,获得积分20
20秒前
隐形曼青应助优雅狗采纳,获得10
20秒前
今后应助qianqian采纳,获得10
20秒前
Ava应助科研通管家采纳,获得10
21秒前
柯一一应助科研通管家采纳,获得10
21秒前
无花果应助科研通管家采纳,获得10
21秒前
爆米花应助cnm采纳,获得10
21秒前
柯一一应助科研通管家采纳,获得10
21秒前
深情安青应助科研通管家采纳,获得10
22秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962070
求助须知:如何正确求助?哪些是违规求助? 3508372
关于积分的说明 11140413
捐赠科研通 3240967
什么是DOI,文献DOI怎么找? 1791157
邀请新用户注册赠送积分活动 872793
科研通“疑难数据库(出版商)”最低求助积分说明 803371