已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine learning techniques for diagnosis of alzheimer disease, mild cognitive disorder, and other types of dementia

机器学习 人工智能 计算机科学 痴呆 深度学习 卷积神经网络 支持向量机 杠杆(统计) 人工神经网络 疾病 医学 病理
作者
Golrokh Mirzaei,Hojjat Adeli
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:72: 103293-103293 被引量:91
标识
DOI:10.1016/j.bspc.2021.103293
摘要

Alzheimer’s disease (AD) is one of the most common form of dementia which mostly affects elderly people. AD identification in early stages is a difficult task in medical practice and there is still no biomarker known to be precise in detection of AD in early stages. Also, AD is not a curable disease at this time and there is a high failure rate in clinical trials for AD drugs. Researchers are making efforts to find ways in early detection of AD to help in slowing down its progression. This paper reviews the state-of-the-art research on machine learning techniques used for detection and classification of AD with a focus on neuroimaging and primarily journal articles published since 2016. These techniques include Support Vector Machine, Random forest, Convolutional Neural Network, K-means, among others. This review suggests that there is no single best approach; however, deep learning techniques such as Convolutional Neural Networks appear to be promising for diagnosis of AD, especially considering that they can leverage transfer learning which overcomes the limitations of availability of a large number of medical images. Research is still on-going to provide an accurate and efficient approach for diagnosis and prediction of AD. In recent years, a number of new and powerful supervised machine learning and classification algorithms have been developed such as the Enhanced Probabilistic Neural Network, Neural Dynamic Classification algorithm, Dynamic Ensemble Learning Algorithm, and Finite Element Machine for fast learning. Applications of these algorithms for diagnosis of AD have yet to be explored.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
甜甜圆圆完成签到,获得积分10
2秒前
俭朴夜雪完成签到,获得积分10
3秒前
万能图书馆应助没心没肺采纳,获得30
4秒前
打打应助Ail采纳,获得20
4秒前
younglsc2发布了新的文献求助10
6秒前
城。完成签到,获得积分10
8秒前
小二郎应助科研通管家采纳,获得10
8秒前
Singularity应助科研通管家采纳,获得10
8秒前
酷波er应助科研通管家采纳,获得10
8秒前
Ava应助科研通管家采纳,获得10
8秒前
慕青应助科研通管家采纳,获得30
8秒前
顾矜应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
田様应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
酷波er应助科研通管家采纳,获得10
9秒前
10秒前
13秒前
15秒前
共享精神应助xiaoran采纳,获得10
15秒前
火山发布了新的文献求助10
17秒前
从此以后发布了新的文献求助10
20秒前
动听的薯条完成签到 ,获得积分10
22秒前
24秒前
香蕉觅云应助IKARUTO采纳,获得20
27秒前
29秒前
天真晓亦发布了新的文献求助10
30秒前
朴实灵竹完成签到,获得积分10
31秒前
科研通AI2S应助guard采纳,获得10
32秒前
火山完成签到,获得积分10
33秒前
爱学习的老中医完成签到,获得积分10
34秒前
肚皮完成签到 ,获得积分10
37秒前
传奇3应助天真晓亦采纳,获得10
37秒前
慕青应助从此以后采纳,获得10
38秒前
白芍完成签到,获得积分10
38秒前
39秒前
大个应助73采纳,获得10
40秒前
月亮是甜的完成签到 ,获得积分10
40秒前
45秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150394
求助须知:如何正确求助?哪些是违规求助? 2801510
关于积分的说明 7845179
捐赠科研通 2459074
什么是DOI,文献DOI怎么找? 1308905
科研通“疑难数据库(出版商)”最低求助积分说明 628583
版权声明 601727