Design method of worn rail grinding profile based on Frechet distance method

研磨 研磨 约束(计算机辅助设计) 还原(数学) 汽车工程 脱轨 材料科学 磁道(磁盘驱动器) 结构工程 计算机科学 机械工程 数学 工程类 冶金 几何学
作者
Fanghua Lin,Lin Zou,Yang Yang,ZhenShuai Shi,Songtao Wang
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit [SAGE]
卷期号:236 (8): 936-949 被引量:1
标识
DOI:10.1177/09544097211049650
摘要

Due to the large volume and high running density of railway freight lines, rail deterioration occur frequently. Thus, it is necessary to grind the rail in time to improve the wheel-rail relationship. The profile data of the worn rail were measured at different measuring points in a section, and the Frechet distance method was adopted to analyze the data. The representative profile reflecting the overall condition of rail wear in this section is obtained. Combined with NURBS curve theory, a fitting algorithm in which the rail profile with certain discrete points was established. Taking the reduction of the amount of grinding material removed as the objective function, setting wheel-rail matching characteristics, and the reduction of rail wear as the constraint conditions, a calculation model for rail grinding profile was established. The dynamic characteristics of standard profile CN75 and g grinding profile OP75 were analyzed by the vehicle track dynamics model. The results showed that compared with the standard profile CN75, the amount of grinding material removed of the grinding profile OP75 is reduced by 44.7%, and the height reduction of the rail top is reduced by 0.39 mm. After [Formula: see text] km of running, the wear amounts of grinding profile OP75 is about 36.1%–36.5% less than that of standard profile CN75.In the small curve section, the derailment coefficient of grinding profile OP75 is reduced by 11.7% compared with that of standard profile CN75. The dynamic performance is improved. The grinding target profile has better dynamic characteristics and is beneficial to reduce wheel-rail wear.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
活力的青枫完成签到 ,获得积分10
刚刚
苏素肃发布了新的文献求助10
刚刚
1秒前
1秒前
2秒前
空禅yew发布了新的文献求助10
2秒前
汉堡包应助花开的声音1217采纳,获得10
2秒前
ying发布了新的文献求助10
2秒前
animenz完成签到,获得积分10
3秒前
tY发布了新的文献求助10
4秒前
OJL发布了新的文献求助10
4秒前
4秒前
4秒前
柒柒完成签到,获得积分10
4秒前
丘比特应助111采纳,获得10
5秒前
6秒前
6秒前
XShu完成签到,获得积分20
6秒前
xx完成签到 ,获得积分10
7秒前
羊知鱼完成签到,获得积分10
8秒前
公茂源发布了新的文献求助30
8秒前
搞怪不言发布了新的文献求助10
9秒前
DDDD完成签到,获得积分10
9秒前
陈莹发布了新的文献求助10
9秒前
执着的幻柏完成签到,获得积分10
9秒前
10秒前
10秒前
苏素肃完成签到,获得积分10
10秒前
隐形曼青应助sw98318采纳,获得10
11秒前
wangyanwxy发布了新的文献求助10
12秒前
12秒前
搜集达人应助WTF采纳,获得10
13秒前
Ava应助陆靖易采纳,获得10
13秒前
daishuheng完成签到 ,获得积分10
14秒前
OJL完成签到 ,获得积分10
15秒前
郑思榆完成签到 ,获得积分10
15秒前
wan完成签到 ,获得积分10
16秒前
cheney完成签到,获得积分10
17秒前
周周好运完成签到,获得积分10
17秒前
温言发布了新的文献求助20
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808