Physiologically based pharmacokinetic (PBPK) modeling of meloxicam in different CYP2C9 genotypes

基于生理学的药代动力学模型 美洛昔康 CYP2C9 药代动力学 药理学 加药 CYP3A4型 基因型 医学 化学 细胞色素P450 内科学 生物化学 新陈代谢 基因
作者
Chang‐Keun Cho,Hye-Jung Park,Pureum Kang,Sungmin Moon,Yun Jeong Lee,Jung‐Woo Bae,Choon‐Gon Jang,Seok‐Yong Lee
出处
期刊:Archives of Pharmacal Research [Springer Nature]
卷期号:44 (12): 1076-1090 被引量:18
标识
DOI:10.1007/s12272-021-01361-3
摘要

Meloxicam, a non-steroidal anti-inflammatory drug, is used for the treatment of rheumatoid arthritis and osteoarthritis. Cytochrome P450 (CYP) 2C9 and CYP3A4 are major and minor enzymes involved in the metabolism of meloxicam. Impaired enzyme activity of CYP2C9 variants increases the plasma exposures of meloxicam and the risk of adverse events. The objective of our study is to develop and validate the physiologically based pharmacokinetic (PBPK) model of meloxicam related to CYP2C9 genetic polymorphism using the PK-Sim® software. In vitro kcat of CYP2C9 was optimized in different CYP2C9 genotypes. The demographic and pharmacokinetic dataset for the development of the PBPK model was extracted from two previous clinical pharmacokinetic studies. Thirty-one clinical datasets, representing different dose regimens and demographic characteristics, were utilized to validate the PBPK model. The shapes of simulated plasma concentration-time profiles in each CYP2C9 genotype were visually similar to observed profiles. The predicted exposures (AUCinf) of meloxicam in CYP2C9*1/*3, CYP2C9*1/*13, and CYP2C9*3/*3 genotypes were increased by 1.77-, 2.91-, and 8.35-fold compared to CYP2C9*1/*1 genotype, respectively. In all datasets for the development and validations, fold errors between predicted and observed pharmacokinetic parameters were within the two-fold error criteria. As a result, the PBPK model was appropriately established and properly described the pharmacokinetics of meloxicam in different CYP2C9 genotypes. This study is expected to contribute to reducing the risk of adverse events of meloxicam through optimization of meloxicam dosing in different CYP2C9 genotypes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
hhzz完成签到,获得积分10
1秒前
1秒前
xhemers完成签到,获得积分10
1秒前
111发布了新的文献求助10
1秒前
2秒前
爱静静应助怡然的莫茗采纳,获得10
3秒前
4秒前
科研通AI5应助清秀的以云采纳,获得30
4秒前
李健的粉丝团团长应助xx采纳,获得10
6秒前
大豪子发布了新的文献求助30
6秒前
李繁蕊发布了新的文献求助10
6秒前
10秒前
10秒前
10秒前
10秒前
橘柚完成签到 ,获得积分10
11秒前
zmmmm发布了新的文献求助10
11秒前
领导范儿应助温言采纳,获得10
11秒前
思源应助OvO采纳,获得10
13秒前
迷糊发布了新的文献求助30
14秒前
LY发布了新的文献求助10
15秒前
zzz完成签到,获得积分10
15秒前
KimJongUn完成签到,获得积分10
15秒前
17秒前
17秒前
zy完成签到,获得积分10
18秒前
开心果子发布了新的文献求助10
18秒前
云痴子完成签到,获得积分10
19秒前
SciGPT应助粥粥采纳,获得10
19秒前
19秒前
19秒前
20秒前
苏源完成签到,获得积分10
20秒前
wu关闭了wu文献求助
20秒前
20秒前
21秒前
21秒前
22秒前
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808