Rational Design of LDH/Zn2SnO4 Heterostructures for Efficient Mineralization of Toluene Through Boosted Interfacial Charge Separation

甲苯 光催化 异质结 X射线光电子能谱 光电流 光化学 化学 材料科学 化学工程 有机化学 光电子学 催化作用 工程类
作者
Ben Lei,Wen Cui,Peng Chen,Ruimin Chen,Yanjuan Sun,Ki‐Hyun Kim,Fan Dong
出处
期刊:Energy & environmental materials 卷期号:6 (1) 被引量:18
标识
DOI:10.1002/eem2.12291
摘要

It is crucial to efficiently separate and transport photo‐induced charge carriers for the effective implementation of photocatalysis toward environmental remediation. A rational design strategy is proposed to validate such proposition through the construction of an interfacial structure in the form of LDH/Zn 2 SnO 4 heterostructures in this research. The interfacial charge transfer on LDH/Zn 2 SnO 4 is greatly promoted via the unique charge transfer pathway, as characterized by transient photocurrent responses, X‐ray photoelectron spectroscopy, electron paramagnetic resonance spectrum, and photoluminescence analysis. As such, it contributes to the generation of reactive oxygen species (ROS) and the activation of reactants for the mineralization of toluene. According to the in situ DRIFTS spectra analysis, the accumulation of benzoic acid takes place possibly through the partial oxidation of the methyl group on toluene at the interface of the LDH/Zn 2 SnO 4 heterostructure. This process can greatly promote the photocatalytic oxidation of toluene with the enhanced ring‐opening efficiency. The LDH/Zn 2 SnO 4 is thus demonstrated as superior photocatalyst against toluene (removal efficiency of 89.5%; mineralization of 83.1%; and quantum efficiency of 4.55 × 10 −6 molecules/photon). As such, the performance of this composite far exceeds that of their individual components (e.g., P25, pure Mg‐Al LDH, or Zn 2 SnO 4 ). This study is expected to offer a new path to the interfacial charge transfer mechanism based on the design of highly efficient photocatalysts for air purification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
萧水白应助飘逸的小土豆采纳,获得50
1秒前
1秒前
1秒前
1秒前
2秒前
克林沙星发布了新的文献求助10
2秒前
腰果虾仁发布了新的文献求助10
3秒前
3秒前
蛋挞发布了新的文献求助10
3秒前
3秒前
谨慎的安蕾完成签到,获得积分10
3秒前
朴实的代桃应助森气采纳,获得10
4秒前
4秒前
所所应助丰富的以南采纳,获得10
5秒前
jim发布了新的文献求助10
5秒前
5秒前
逐影发布了新的文献求助10
6秒前
你好完成签到 ,获得积分20
6秒前
可乐发布了新的文献求助10
7秒前
7秒前
7秒前
gaoxueli发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
8秒前
8秒前
酷炫素发布了新的文献求助10
9秒前
tynuxu发布了新的文献求助10
9秒前
JamesPei应助BUBBLE采纳,获得30
9秒前
欢呼的寻双完成签到,获得积分20
10秒前
10秒前
cdy完成签到 ,获得积分10
10秒前
小柯完成签到,获得积分10
11秒前
11秒前
peng发布了新的文献求助10
12秒前
12秒前
777发布了新的文献求助10
13秒前
YU关注了科研通微信公众号
13秒前
fdpb发布了新的文献求助10
13秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310425
求助须知:如何正确求助?哪些是违规求助? 2943334
关于积分的说明 8513915
捐赠科研通 2618566
什么是DOI,文献DOI怎么找? 1431182
科研通“疑难数据库(出版商)”最低求助积分说明 664398
邀请新用户注册赠送积分活动 649599