因果推理
推论
观察研究
人口
透视图(图形)
因果模型
因果关系(物理学)
计算机科学
研究设计
统计推断
计量经济学
因果结构
过程(计算)
数据科学
统计
人工智能
数学
人口学
社会学
操作系统
物理
量子力学
作者
M Zhang,Yongqing Zhu,Y X Li,Yicheng Mou,Haidong Kan,Weiwei Fan,Jianghong Dai,Zheng Ying
出处
期刊:PubMed
日期:2021-07-10
标识
DOI:10.3760/cma.j.cn112338-20200612-00839
摘要
Epidemiological analysis describes and compares the characteristics of a certain number of people to make causal inferences. The formation of the study population is always the first step. In this paper, we first define the concepts of cross-sections at both individual level and population level and introduce the three assumptions needed in the measurements in observational studies, i. e. the true values of the attributes are stable with time, the attribute variables are independent and the individuals are independent during the measuring process. We also determine that the causal inference research should be unified based on the time of the occurrence or beginning of a postulated cause, or exposure, should be in. Then, based on the dual roles of the population cross-section with causal thinking, we propose that research designs can be classified into two types with different characteristics: history reconstruction research and future exploration research. Finally, we briefly analyze the research design framework and the relationship between estimated effects and different designs. The discussion of the formation of a study population from the perspective of causal thinking can make a foundation for the classification of causal inference research design with appropriate effect parameters, which needs to be further studied.流行病学是对一定数量的人群进行特征描述和比较,并在此基础上进行因果推断。研究人群的形成是其第一步。本研究以观察性研究为例,首先定义个体截面和人群截面,并阐明其测量需满足的3个假设:属性真实值随时间保持不变,属性变量间互不干扰,个体间互不干扰;接着指出因果推断研究应以待定因(或暴露)的发生或状态开始的时间为标准进行统一;最后,基于人群截面的双重角色,提出人群的因果推断研究可分为2类:历史重建研究和探索未来研究,并初步梳理了研究设计框架、估计的效应及设计间的关系。从因果思维角度探讨研究人群的形成过程,可为明确因果推断研究设计类型奠定基础,选取合适的效应估计进行因果推断,值得深入研究。.
科研通智能强力驱动
Strongly Powered by AbleSci AI