投标
强化学习
计算机科学
电力市场
双重拍卖
市场清算
点对点
利润(经济学)
市场机制
计算经济学
电
息税前利润
多智能体系统
运筹学
微观经济学
人工智能
分布式计算
共同价值拍卖
经济
工程类
宏观经济学
电气工程
作者
Dawei Qiu,Jianhong Wang,Junkai Wang,Goran Štrbac
标识
DOI:10.24963/ijcai.2021/401
摘要
With increasing prosumers employed with distributed energy resources (DER), advanced energy management has become increasingly important. To this end, integrating demand-side DER into electricity market is a trend for future smart grids. The double-side auction (DA) market is viewed as a promising peer-to-peer (P2P) energy trading mechanism that enables interactions among prosumers in a distributed manner. To achieve the maximum profit in a dynamic electricity market, prosumers act as price makers to simultaneously optimize their operations and trading strategies. However, the traditional DA market is difficult to be explicitly modelled due to its complex clearing algorithm and the stochastic bidding behaviors of the participants. For this reason, in this paper we model this task as a multi-agent reinforcement learning (MARL) problem and propose an algorithm called DA-MADDPG that is modified based on MADDPG by abstracting the other agents’ observations and actions through the DA market public information for each agent’s critic. The experiments show that 1) prosumers obtain more economic benefits in P2P energy trading w.r.t. the conventional electricity market independently trading with the utility company; and 2) DA-MADDPG performs better than the traditional Zero Intelligence (ZI) strategy and the other MARL algorithms, e.g., IQL, IDDPG, IPPO and MADDPG.
科研通智能强力驱动
Strongly Powered by AbleSci AI