Landslide susceptibility assessment using weights-of-evidence model and cluster analysis along the highways in the Hubei section of the Three Gorges Reservoir Area

山崩 支流 地质学 水文学(农业) 环境科学 岩土工程 地理 地图学
作者
Linfei Chen,Haixiang Guo,Peisong Gong,Yuying Yang,Zhili Zuo,Mingyun Gu
出处
期刊:Computers & Geosciences [Elsevier]
卷期号:156: 104899-104899 被引量:45
标识
DOI:10.1016/j.cageo.2021.104899
摘要

Landslide susceptibility assessment has become the focus of geological disaster research to strengthen disaster prevention and mitigation. Landslide disasters frequently occur in the Hubei section of the Three Gorges Reservoir Area (TGRA), with some potential landslides located along the highway, which brings risks to highway engineering, maintenance and transportation. In this paper, a comprehensive landslide susceptibility evaluation indicator framework with three dimensions and 12 factors was established, and an integrated approach was applied to evaluate the landslide susceptibility level, which combined weights-of-evidence model, seven clustering algorithms, three quality evaluation indices and the elbow method. To validate the effectiveness of the methods, five objective measures were employed for evaluation. The 69 samples along the highway were used for training, and another 30 samples were collected for validation. The results showed that the landslide susceptibility level of potential landslides can be effectively predicted by K-means algorithm. It was found that the landslide susceptibility for each cluster had significant differences, which were mainly reflected in natural induced factors, followed by human induced factors, while the slope structure showed little differences; the areas with low landslide susceptibility appeared sheet distribution, while the areas with high landslide susceptibility showed zonal distribution along the Yangtze River and its tributaries. This study developed a comprehensive indicator system and method for landslide susceptibility assessment along highways and provided a reference for the risk evaluation and prevention management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Davy_Y完成签到,获得积分10
1秒前
1秒前
yahonyoyoyo发布了新的文献求助10
1秒前
CipherSage应助壮观问寒采纳,获得10
2秒前
3秒前
sin发布了新的文献求助10
4秒前
5秒前
和谐的映梦完成签到,获得积分10
5秒前
布熙哆完成签到,获得积分10
6秒前
大海完成签到,获得积分10
6秒前
zhenjl完成签到,获得积分10
6秒前
7秒前
科研小虫完成签到,获得积分10
7秒前
bububusbu发布了新的文献求助10
7秒前
商毛毛发布了新的文献求助10
8秒前
NexusExplorer应助尔东采纳,获得10
8秒前
Miao0603完成签到,获得积分10
10秒前
11秒前
lqy1214完成签到,获得积分10
11秒前
Singularity应助鲁新连采纳,获得10
12秒前
12秒前
Yziii应助rio采纳,获得20
12秒前
12秒前
zhengyueling完成签到,获得积分10
12秒前
迅速友容发布了新的文献求助10
12秒前
Wei Qin完成签到,获得积分10
13秒前
13秒前
77完成签到,获得积分10
13秒前
sin完成签到,获得积分10
14秒前
所所应助商毛毛采纳,获得10
14秒前
小海娃完成签到 ,获得积分10
14秒前
科研通AI2S应助科研小虫采纳,获得10
14秒前
哈哈哈哈发布了新的文献求助10
16秒前
善学以致用应助yahonyoyoyo采纳,获得10
17秒前
研友_VZG7GZ应助bububusbu采纳,获得10
17秒前
美好乐松完成签到,获得积分0
17秒前
Licyan完成签到,获得积分10
17秒前
77发布了新的文献求助10
18秒前
quanjiazhi发布了新的文献求助10
19秒前
19秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156020
求助须知:如何正确求助?哪些是违规求助? 2807409
关于积分的说明 7872961
捐赠科研通 2465760
什么是DOI,文献DOI怎么找? 1312375
科研通“疑难数据库(出版商)”最低求助积分说明 630083
版权声明 601905