A Hybrid Neural Network Model for Marine Dissolved Oxygen Concentrations Time-Series Forecasting Based on Multi-Factor Analysis and a Multi-Model Ensemble

粒子群优化 计算机科学 系列(地层学) 时间序列 集合预报 水准点(测量) 人工神经网络 数据挖掘 算法 人工智能 机器学习 大地测量学 生物 古生物学 地理
作者
Hui Liu,Rui Yang,Zhu Duan,Haiping Wu
出处
期刊:Engineering [Elsevier]
卷期号:7 (12): 1751-1765 被引量:34
标识
DOI:10.1016/j.eng.2020.10.023
摘要

Dissolved oxygen (DO) is an important indicator of aquaculture, and its accurate forecasting can effectively improve the quality of aquatic products. In this paper, a new DO hybrid forecasting model is proposed that includes three stages: multi-factor analysis, adaptive decomposition, and an optimization-based ensemble. First, considering the complex factors affecting DO, the grey relational (GR) degree method is used to screen out the environmental factors most closely related to DO. The consideration of multiple factors makes model fusion more effective. Second, the series of DO, water temperature, salinity, and oxygen saturation are decomposed adaptively into sub-series by means of the empirical wavelet transform (EWT) method. Then, five benchmark models are utilized to forecast the sub-series of EWT decomposition. The ensemble weights of these five sub-forecasting models are calculated by particle swarm optimization and gravitational search algorithm (PSOGSA). Finally, a multi-factor ensemble model for DO is obtained by weighted allocation. The performance of the proposed model is verified by time-series data collected by the pacific islands ocean observing system (PacIOOS) from the WQB04 station at Hilo. The evaluation indicators involved in the experiment include the Nash–Sutcliffe efficiency (NSE), Kling–Gupta efficiency (KGE), mean absolute percent error (MAPE), standard deviation of error (SDE), and coefficient of determination (R2). Example analysis demonstrates that: ① The proposed model can obtain excellent DO forecasting results; ② the proposed model is superior to other comparison models; and ③ the forecasting model can be used to analyze the trend of DO and enable managers to make better management decisions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助yuchen12a采纳,获得10
刚刚
刚刚
1秒前
1秒前
万能图书馆应助琦琦采纳,获得10
1秒前
一闪一闪亮晶晶完成签到 ,获得积分10
2秒前
@Hi发布了新的文献求助10
2秒前
Owen应助常常采纳,获得10
2秒前
2秒前
隐形曼青应助悠咪采纳,获得10
2秒前
朴素从安完成签到,获得积分10
2秒前
111完成签到,获得积分20
2秒前
3秒前
Akim应助落后的语蝶采纳,获得10
4秒前
风中黑猫发布了新的文献求助10
5秒前
qqwrv发布了新的文献求助10
5秒前
在水一方应助程老板采纳,获得10
5秒前
7秒前
FelixChen发布了新的文献求助10
7秒前
科目三应助冷迎梦采纳,获得10
8秒前
9秒前
9秒前
9秒前
感动的芝麻完成签到,获得积分10
10秒前
爆米花应助热心芹菜采纳,获得10
11秒前
11秒前
大YY完成签到,获得积分10
12秒前
12秒前
12秒前
12秒前
小二郎应助科研通管家采纳,获得10
12秒前
genomed应助科研通管家采纳,获得10
12秒前
Orange应助科研通管家采纳,获得30
13秒前
爆米花应助科研通管家采纳,获得10
13秒前
小蘑菇应助科研通管家采纳,获得10
13秒前
搜集达人应助雨雾采纳,获得10
13秒前
Jasper应助科研通管家采纳,获得10
13秒前
Lucas应助科研通管家采纳,获得10
13秒前
13秒前
genomed应助科研通管家采纳,获得10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Time Matters: On Theory and Method 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3560457
求助须知:如何正确求助?哪些是违规求助? 3134520
关于积分的说明 9407839
捐赠科研通 2834665
什么是DOI,文献DOI怎么找? 1558196
邀请新用户注册赠送积分活动 727968
科研通“疑难数据库(出版商)”最低求助积分说明 716641