天空
薄雾
失真(音乐)
频道(广播)
漫射天空辐射
计算机科学
计算机视觉
人工智能
图像(数学)
干扰(通信)
图像质量
遥感
光学
物理
天体物理学
地质学
气象学
计算机网络
散射
放大器
带宽(计算)
作者
Yongpeng Pan,Zhenxue Chen,Xianming Li,Weikai He
标识
DOI:10.1142/s0219467821500534
摘要
Due to the haze weather, the outdoor image quality is degraded, which reduces the image contrast, thereby reducing the efficiency of computer vision systems such as target recognition. There are two aspects of the traditional algorithm based on the principle of dark channel to be improved. First, the restored images obviously contain color distortion in the sky region. Second, the white regions in the scene easily affect the atmospheric light estimated. To solve the above problems, this paper proposes a single-image dehazing and image segmentation method via dark channel prior (DCP) and adaptive threshold. The sky region of hazing image is relatively bright, so sky region does not meet the DCP. The sky part is separated by the adaptive threshold, then the scenery and the sky area are dehazed, respectively. In order to avoid the interference caused by white objects to the estimation of atmospheric light, we estimate the value of atmospheric light using the separated area of the sky. The algorithm in this paper makes up for the shortcoming that the algorithm based on the DCP cannot effectively process the hazing image with sky region, avoiding the effect of white objects on estimating atmospheric light. Experimental results show the feasibility and effectiveness of the improved algorithm.
科研通智能强力驱动
Strongly Powered by AbleSci AI