Single-Image Dehazing via Dark Channel Prior and Adaptive Threshold

天空 薄雾 失真(音乐) 频道(广播) 漫射天空辐射 计算机科学 计算机视觉 人工智能 图像(数学) 干扰(通信) 图像质量 遥感 光学 物理 天体物理学 地质学 气象学 计算机网络 散射 放大器 带宽(计算)
作者
Yongpeng Pan,Zhenxue Chen,Xianming Li,Weikai He
出处
期刊:International Journal of Image and Graphics [World Scientific]
卷期号:21 (04) 被引量:9
标识
DOI:10.1142/s0219467821500534
摘要

Due to the haze weather, the outdoor image quality is degraded, which reduces the image contrast, thereby reducing the efficiency of computer vision systems such as target recognition. There are two aspects of the traditional algorithm based on the principle of dark channel to be improved. First, the restored images obviously contain color distortion in the sky region. Second, the white regions in the scene easily affect the atmospheric light estimated. To solve the above problems, this paper proposes a single-image dehazing and image segmentation method via dark channel prior (DCP) and adaptive threshold. The sky region of hazing image is relatively bright, so sky region does not meet the DCP. The sky part is separated by the adaptive threshold, then the scenery and the sky area are dehazed, respectively. In order to avoid the interference caused by white objects to the estimation of atmospheric light, we estimate the value of atmospheric light using the separated area of the sky. The algorithm in this paper makes up for the shortcoming that the algorithm based on the DCP cannot effectively process the hazing image with sky region, avoiding the effect of white objects on estimating atmospheric light. Experimental results show the feasibility and effectiveness of the improved algorithm.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
芝士完成签到,获得积分10
刚刚
pqy发布了新的文献求助10
刚刚
脆脆鲨完成签到,获得积分10
1秒前
1秒前
文安完成签到,获得积分10
1秒前
微笑如冰完成签到,获得积分10
2秒前
luo给luo的求助进行了留言
2秒前
晨曦发布了新的文献求助10
2秒前
2秒前
大方小白发布了新的文献求助10
2秒前
细腻沅发布了新的文献求助10
2秒前
科研通AI5应助FFF采纳,获得10
3秒前
3秒前
茉莉完成签到,获得积分10
3秒前
今今发布了新的文献求助10
4秒前
追寻的筝发布了新的文献求助10
4秒前
请叫我风吹麦浪应助Ll采纳,获得10
4秒前
Keming完成签到,获得积分10
4秒前
害羞聋五发布了新的文献求助10
5秒前
tulip发布了新的文献求助10
5秒前
5秒前
5秒前
嘟嘟发布了新的文献求助10
5秒前
6秒前
苏照杭应助jym采纳,获得10
6秒前
6秒前
6秒前
眼睛大又蓝完成签到,获得积分10
6秒前
kangkang完成签到,获得积分10
6秒前
7秒前
7秒前
绵绵完成签到,获得积分10
7秒前
8秒前
Mlwwq完成签到,获得积分10
8秒前
8秒前
小皮蛋儿完成签到,获得积分10
8秒前
lyn发布了新的文献求助10
8秒前
JUSTs0so完成签到,获得积分10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762