Measurements and modelling of the response of an ultrasonic pulse to a lithium-ion battery as a precursor for state of charge estimation

电池(电) 超声波传感器 荷电状态 电荷(物理) 电气工程 锂离子电池 信号(编程语言) 离子 电压 材料科学 锂(药物) 计算机科学 电子工程 工程类 声学 化学 物理 功率(物理) 有机化学 程序设计语言 内分泌学 医学 量子力学
作者
R.J. Copley,Denis Cumming,Yi Wu,R.S. Dwyer-Joyce
出处
期刊:Journal of energy storage [Elsevier]
卷期号:36: 102406-102406 被引量:52
标识
DOI:10.1016/j.est.2021.102406
摘要

Lithium-ion batteries change their internal state during cycles of charge and discharge. The state of charge of a lithium-ion battery varies during the charging cycle and depends on the internal structure of the components which may degrade with use. Estimation of the state of charge is commonly performed by battery management systems that rely on charge counting and cell voltage measurement. Determining the physical state of the battery components is challenging. Recently, the response of an ultrasonic pulse to a battery has been successfully correlated with both change in state of charge and state of health, the quality of the approach is now well established. This study assesses the qualities contained within an ultrasound signal response by investigating the behaviour of ultrasonic waves as they pass through the components in a layered battery structure, as those components change with battery charge. A model has been developed to understand the nature of the ultrasound response and the features that provide a particular characteristic. This is useful as two apparently identical batteries can produce very different ultrasonic responses. Detailed data analysis has been performed to find which combination of data comparisons provides the strongest correlation with state of charge and guides decisions about future use of battery monitoring using ultrasound. Finally, a smart peak selection method has been developed to ensure that regardless of the nature of the ultrasound response, state of charge measurements are optimised by ensuring the regions of signal with best battery charge correlation are identified. This can greatly help with the automation of the process in a sensor-based battery management system.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
甜美幻露发布了新的文献求助10
刚刚
1秒前
1秒前
天涯发布了新的文献求助10
1秒前
1秒前
1秒前
Xiebro完成签到 ,获得积分10
2秒前
小可不怕困难完成签到,获得积分10
2秒前
zhoushuhui完成签到 ,获得积分10
3秒前
潇潇发布了新的文献求助10
4秒前
张文静发布了新的文献求助10
4秒前
4秒前
悦耳青梦发布了新的文献求助10
4秒前
忧郁映之发布了新的文献求助10
5秒前
5秒前
Hepatology完成签到,获得积分10
5秒前
Tysonqu发布了新的文献求助10
6秒前
6秒前
xlh发布了新的文献求助10
6秒前
张子翀完成签到 ,获得积分10
6秒前
斯文败类应助欲扬先抑采纳,获得10
6秒前
wwww发布了新的文献求助10
8秒前
shiqi关注了科研通微信公众号
8秒前
8秒前
香蕉觅云应助轻松的语海采纳,获得30
9秒前
量子星尘发布了新的文献求助10
9秒前
开朗的宛丝完成签到 ,获得积分10
9秒前
房房不慌完成签到 ,获得积分10
9秒前
9秒前
10秒前
daisy发布了新的文献求助10
10秒前
清风揽月发布了新的文献求助10
11秒前
钱大大发布了新的文献求助10
11秒前
11秒前
柳LL发布了新的文献求助10
11秒前
文静念寒完成签到,获得积分10
11秒前
FFFFF应助粗心的从露采纳,获得10
12秒前
打打应助曾阿牛采纳,获得10
12秒前
Orange应助小孙失策了采纳,获得10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601468
求助须知:如何正确求助?哪些是违规求助? 4686975
关于积分的说明 14846893
捐赠科研通 4681115
什么是DOI,文献DOI怎么找? 2539378
邀请新用户注册赠送积分活动 1506298
关于科研通互助平台的介绍 1471297