Measurements and modelling of the response of an ultrasonic pulse to a lithium-ion battery as a precursor for state of charge estimation

电池(电) 超声波传感器 荷电状态 电荷(物理) 电气工程 锂离子电池 信号(编程语言) 离子 电压 材料科学 锂(药物) 计算机科学 电子工程 工程类 声学 化学 物理 功率(物理) 有机化学 程序设计语言 内分泌学 医学 量子力学
作者
R.J. Copley,Denis Cumming,Yi Wu,R.S. Dwyer-Joyce
出处
期刊:Journal of energy storage [Elsevier]
卷期号:36: 102406-102406 被引量:52
标识
DOI:10.1016/j.est.2021.102406
摘要

Lithium-ion batteries change their internal state during cycles of charge and discharge. The state of charge of a lithium-ion battery varies during the charging cycle and depends on the internal structure of the components which may degrade with use. Estimation of the state of charge is commonly performed by battery management systems that rely on charge counting and cell voltage measurement. Determining the physical state of the battery components is challenging. Recently, the response of an ultrasonic pulse to a battery has been successfully correlated with both change in state of charge and state of health, the quality of the approach is now well established. This study assesses the qualities contained within an ultrasound signal response by investigating the behaviour of ultrasonic waves as they pass through the components in a layered battery structure, as those components change with battery charge. A model has been developed to understand the nature of the ultrasound response and the features that provide a particular characteristic. This is useful as two apparently identical batteries can produce very different ultrasonic responses. Detailed data analysis has been performed to find which combination of data comparisons provides the strongest correlation with state of charge and guides decisions about future use of battery monitoring using ultrasound. Finally, a smart peak selection method has been developed to ensure that regardless of the nature of the ultrasound response, state of charge measurements are optimised by ensuring the regions of signal with best battery charge correlation are identified. This can greatly help with the automation of the process in a sensor-based battery management system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jiayouya123发布了新的文献求助30
刚刚
刚刚
刚刚
xiaohu完成签到 ,获得积分10
1秒前
3秒前
SHIMMER完成签到,获得积分10
3秒前
张亚博发布了新的文献求助10
3秒前
DU发布了新的文献求助10
4秒前
ll完成签到,获得积分10
4秒前
5秒前
ding应助usokb采纳,获得10
5秒前
6秒前
Tonald Yang发布了新的文献求助10
6秒前
冷艳的凡阳完成签到,获得积分10
7秒前
傲娇丹翠完成签到,获得积分10
7秒前
Yang发布了新的文献求助10
8秒前
一个火蓉果啊完成签到,获得积分10
9秒前
重要问筠完成签到,获得积分10
9秒前
Zhoujian发布了新的文献求助10
9秒前
10秒前
curry发布了新的文献求助10
10秒前
丘比特应助henry采纳,获得10
10秒前
Ying应助君莫笑采纳,获得10
10秒前
10秒前
lie完成签到,获得积分10
11秒前
我是老大应助sunyanghu369采纳,获得10
11秒前
DU完成签到,获得积分10
12秒前
老实的大白菜真实的钥匙完成签到,获得积分10
12秒前
米里迷路完成签到,获得积分10
12秒前
13秒前
wwx发布了新的文献求助10
13秒前
summor发布了新的文献求助10
14秒前
灵巧的柚子完成签到,获得积分20
14秒前
熊饼干完成签到,获得积分10
14秒前
苗条棒棒糖完成签到,获得积分10
15秒前
15秒前
16秒前
17秒前
17秒前
虚幻白玉完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
茶艺师试题库(初级、中级、高级、技师、高级技师) 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertebrate Palaeontology, 5th Edition 570
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5360857
求助须知:如何正确求助?哪些是违规求助? 4491327
关于积分的说明 13982062
捐赠科研通 4394043
什么是DOI,文献DOI怎么找? 2413707
邀请新用户注册赠送积分活动 1406522
关于科研通互助平台的介绍 1381057