Measurements and modelling of the response of an ultrasonic pulse to a lithium-ion battery as a precursor for state of charge estimation

电池(电) 超声波传感器 荷电状态 电荷(物理) 电气工程 锂离子电池 信号(编程语言) 离子 电压 材料科学 锂(药物) 计算机科学 电子工程 工程类 声学 化学 物理 功率(物理) 有机化学 程序设计语言 内分泌学 医学 量子力学
作者
R.J. Copley,Denis Cumming,Yi Wu,R.S. Dwyer-Joyce
出处
期刊:Journal of energy storage [Elsevier]
卷期号:36: 102406-102406 被引量:49
标识
DOI:10.1016/j.est.2021.102406
摘要

Lithium-ion batteries change their internal state during cycles of charge and discharge. The state of charge of a lithium-ion battery varies during the charging cycle and depends on the internal structure of the components which may degrade with use. Estimation of the state of charge is commonly performed by battery management systems that rely on charge counting and cell voltage measurement. Determining the physical state of the battery components is challenging. Recently, the response of an ultrasonic pulse to a battery has been successfully correlated with both change in state of charge and state of health, the quality of the approach is now well established. This study assesses the qualities contained within an ultrasound signal response by investigating the behaviour of ultrasonic waves as they pass through the components in a layered battery structure, as those components change with battery charge. A model has been developed to understand the nature of the ultrasound response and the features that provide a particular characteristic. This is useful as two apparently identical batteries can produce very different ultrasonic responses. Detailed data analysis has been performed to find which combination of data comparisons provides the strongest correlation with state of charge and guides decisions about future use of battery monitoring using ultrasound. Finally, a smart peak selection method has been developed to ensure that regardless of the nature of the ultrasound response, state of charge measurements are optimised by ensuring the regions of signal with best battery charge correlation are identified. This can greatly help with the automation of the process in a sensor-based battery management system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
23完成签到,获得积分10
1秒前
伶俐香寒发布了新的文献求助10
1秒前
5秒前
桐桐应助快点毕业吧采纳,获得10
5秒前
MoonFlows应助rr采纳,获得20
5秒前
hukun100完成签到,获得积分10
6秒前
green完成签到,获得积分10
6秒前
7秒前
8秒前
8秒前
fairyinn完成签到 ,获得积分10
10秒前
陶火桃应助HarryYang采纳,获得50
10秒前
green发布了新的文献求助10
11秒前
ardejiang发布了新的文献求助10
12秒前
14秒前
就爱从黑巧完成签到,获得积分10
15秒前
彦祖i学术完成签到,获得积分10
19秒前
19秒前
19秒前
21秒前
sjj发布了新的文献求助10
22秒前
贰鸟应助HQ采纳,获得20
22秒前
nononoo发布了新的文献求助10
23秒前
水澈天澜完成签到,获得积分10
23秒前
快点毕业吧完成签到,获得积分20
23秒前
24秒前
丘比特应助littlehie采纳,获得30
24秒前
26秒前
hkhk完成签到,获得积分10
26秒前
27秒前
boom发布了新的文献求助10
27秒前
满意向雁发布了新的文献求助10
29秒前
英俊安荷发布了新的文献求助10
31秒前
32秒前
orixero应助温暖的豆芽采纳,获得10
35秒前
铁铁发布了新的文献求助10
36秒前
36秒前
37秒前
37秒前
38秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157384
求助须知:如何正确求助?哪些是违规求助? 2808832
关于积分的说明 7878535
捐赠科研通 2467168
什么是DOI,文献DOI怎么找? 1313255
科研通“疑难数据库(出版商)”最低求助积分说明 630369
版权声明 601919