Enhanced photocatalytic degradation of organic contaminants over a CuO/g-C3N4 p–n heterojunction under visible light irradiation

光催化 异质结 罗丹明B 材料科学 可见光谱 半导体 光化学 煅烧 降级(电信) 吸收(声学) 化学工程 光电子学 化学 复合材料 催化作用 有机化学 电子工程 工程类
作者
Lejie Zhu,Jianmin Luo,Guohui Dong,Yun Lu,Yinlong Lai,Jun Liu,Guanmei Chen,Yi Zhang
出处
期刊:RSC Advances [The Royal Society of Chemistry]
卷期号:11 (53): 33373-33379 被引量:19
标识
DOI:10.1039/d1ra05329a
摘要

As a kind of metal-free organic semiconductor photocatalyst, g-C3N4 has been widely explored for use in photocatalysis. However, the low quantum yield, small absorption range, and poor conductivity limit its large-scale application. Introducing another kind of semiconductor, particularly an oxide semiconductor, can result in some unexpected properties, such as an improved change transfer, enhanced light absorption, and better conductivity. In this work, CuO/g-C3N4 is successfully prepared through an impregnation and post-calcination method. A series of measurements support the formation of an organic-inorganic hybrid p-n heterojunction at the CuO (p-type) and g-C3N4 (n-type) interface. Furthermore, the photoactivity of the composite is evaluated via photocatalytic NO removal and the visible degradation of rhodamine B (RhB). Results show that the photocatalytic properties of CuO/g-C3N4 are almost twice as high as those of g-C3N4. In comparative tests, the photocatalytic degradation performance of Mix-CuO/g-C3N4 (the mixture of CuO and g-C3N4 nanosheets prepared by mechanically mixing) is even lower than that of pure g-C3N4. The degradation of RhB is only 19.7% under visible light after 30 min of irradiation. The improvement in the photoactivity of CuO/g-C3N4 results from the built-in electric field close to the formed p-n heterojunction, which switches the electron transfer mechanism from a double-charge transfer mechanism to a Z-scheme mechanism. In addition, the formed p-n heterojunction favors charge transfer, and thus the photocatalytic performance is significantly improved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
2秒前
2秒前
2秒前
科研通AI5应助GGG采纳,获得10
3秒前
3秒前
5秒前
Ann发布了新的文献求助20
5秒前
5秒前
buno应助duxinyue采纳,获得10
5秒前
xlj发布了新的文献求助10
6秒前
6秒前
可爱的函函应助zhen采纳,获得10
7秒前
研友_VZG7GZ应助dingdong采纳,获得10
8秒前
8秒前
李成恩完成签到 ,获得积分10
9秒前
心碎的黄焖鸡完成签到 ,获得积分10
9秒前
琪琪扬扬发布了新的文献求助10
10秒前
11秒前
11秒前
宗磬完成签到,获得积分10
12秒前
NexusExplorer应助搞怪不言采纳,获得10
13秒前
科研通AI5应助一天八杯水采纳,获得10
14秒前
14秒前
14秒前
15秒前
大模型应助琪琪扬扬采纳,获得10
16秒前
丘比特应助琪琪扬扬采纳,获得10
16秒前
共享精神应助琪琪扬扬采纳,获得10
16秒前
JamesPei应助dafwfwaf采纳,获得10
16秒前
叶子完成签到,获得积分10
16秒前
xuyun完成签到,获得积分10
16秒前
脑洞疼应助木棉采纳,获得10
16秒前
GGG发布了新的文献求助10
16秒前
zena92完成签到,获得积分10
17秒前
17秒前
听风发布了新的文献求助10
18秒前
一一发布了新的文献求助10
18秒前
CC完成签到,获得积分20
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808