Enhanced photocatalytic degradation of organic contaminants over a CuO/g-C3N4 p–n heterojunction under visible light irradiation

光催化 异质结 罗丹明B 材料科学 可见光谱 半导体 光化学 煅烧 降级(电信) 吸收(声学) 化学工程 光电子学 化学 复合材料 催化作用 有机化学 电子工程 工程类
作者
Lejie Zhu,Jianmin Luo,Guohui Dong,Yun Lu,Yinlong Lai,Jun Liu,Guanmei Chen,Yi Zhang
出处
期刊:RSC Advances [The Royal Society of Chemistry]
卷期号:11 (53): 33373-33379 被引量:19
标识
DOI:10.1039/d1ra05329a
摘要

As a kind of metal-free organic semiconductor photocatalyst, g-C3N4 has been widely explored for use in photocatalysis. However, the low quantum yield, small absorption range, and poor conductivity limit its large-scale application. Introducing another kind of semiconductor, particularly an oxide semiconductor, can result in some unexpected properties, such as an improved change transfer, enhanced light absorption, and better conductivity. In this work, CuO/g-C3N4 is successfully prepared through an impregnation and post-calcination method. A series of measurements support the formation of an organic-inorganic hybrid p-n heterojunction at the CuO (p-type) and g-C3N4 (n-type) interface. Furthermore, the photoactivity of the composite is evaluated via photocatalytic NO removal and the visible degradation of rhodamine B (RhB). Results show that the photocatalytic properties of CuO/g-C3N4 are almost twice as high as those of g-C3N4. In comparative tests, the photocatalytic degradation performance of Mix-CuO/g-C3N4 (the mixture of CuO and g-C3N4 nanosheets prepared by mechanically mixing) is even lower than that of pure g-C3N4. The degradation of RhB is only 19.7% under visible light after 30 min of irradiation. The improvement in the photoactivity of CuO/g-C3N4 results from the built-in electric field close to the formed p-n heterojunction, which switches the electron transfer mechanism from a double-charge transfer mechanism to a Z-scheme mechanism. In addition, the formed p-n heterojunction favors charge transfer, and thus the photocatalytic performance is significantly improved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xxxk发布了新的文献求助10
刚刚
刚刚
踏实的嵩完成签到,获得积分10
1秒前
1秒前
可乐发布了新的文献求助10
1秒前
Fengliguantou发布了新的文献求助10
1秒前
BZPL发布了新的文献求助10
3秒前
打打应助GGbond采纳,获得10
3秒前
4秒前
4秒前
深情安青应助wxhy采纳,获得10
5秒前
5秒前
yyw发布了新的文献求助10
6秒前
瓶子完成签到 ,获得积分10
6秒前
北城发布了新的文献求助10
6秒前
英俊的铭应助天南采纳,获得30
8秒前
8秒前
up完成签到,获得积分10
8秒前
Bj驳回了萧水白应助
9秒前
10秒前
dddd发布了新的文献求助10
10秒前
充电宝应助tfldog采纳,获得10
11秒前
lukehan完成签到,获得积分10
11秒前
CooL完成签到 ,获得积分10
11秒前
阿布发布了新的文献求助10
11秒前
11秒前
Fengliguantou完成签到,获得积分20
12秒前
12秒前
Rollei发布了新的文献求助10
13秒前
13秒前
王先生完成签到,获得积分10
14秒前
Dr发布了新的文献求助10
14秒前
15秒前
15秒前
geold发布了新的文献求助10
15秒前
共享精神应助ufoghl采纳,获得10
16秒前
16秒前
16秒前
Xu_W卜完成签到,获得积分10
17秒前
文艺往事发布了新的文献求助10
17秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148361
求助须知:如何正确求助?哪些是违规求助? 2799495
关于积分的说明 7835018
捐赠科研通 2456710
什么是DOI,文献DOI怎么找? 1307424
科研通“疑难数据库(出版商)”最低求助积分说明 628154
版权声明 601655