A Transformer-Based Approach to Multilingual Fake News Detection in Low-Resource Languages

计算机科学 自然语言处理 人工智能 编码器 学习迁移 变压器 领域(数学分析) 语言模型 可用性 人机交互 数学 量子力学 操作系统 物理 数学分析 电压
作者
Arkadipta De,Dibyanayan Bandyopadhyay,Baban Gain,Asif Ekbal
出处
期刊:ACM Transactions on Asian and Low-Resource Language Information Processing 卷期号:21 (1): 1-20 被引量:34
标识
DOI:10.1145/3472619
摘要

Fake news classification is one of the most interesting problems that has attracted huge attention to the researchers of artificial intelligence, natural language processing, and machine learning (ML). Most of the current works on fake news detection are in the English language, and hence this has limited its widespread usability, especially outside the English literate population. Although there has been a growth in multilingual web content, fake news classification in low-resource languages is still a challenge due to the non-availability of an annotated corpus and tools. This article proposes an effective neural model based on the multilingual Bidirectional Encoder Representations from Transformer (BERT) for domain-agnostic multilingual fake news classification. Large varieties of experiments, including language-specific and domain-specific settings, are conducted. The proposed model achieves high accuracy in domain-specific and domain-agnostic experiments, and it also outperforms the current state-of-the-art models. We perform experiments on zero-shot settings to assess the effectiveness of language-agnostic feature transfer across different languages, showing encouraging results. Cross-domain transfer experiments are also performed to assess language-independent feature transfer of the model. We also offer a multilingual multidomain fake news detection dataset of five languages and seven different domains that could be useful for the research and development in resource-scarce scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雪儿完成签到,获得积分10
刚刚
1秒前
瓜地学龙叫完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助30
3秒前
pearsir发布了新的文献求助10
5秒前
一颗苹果完成签到,获得积分10
6秒前
映城应助瓜地学龙叫采纳,获得30
6秒前
7秒前
毕春宇发布了新的文献求助10
11秒前
一丁雨完成签到,获得积分10
12秒前
13秒前
13秒前
13秒前
16秒前
乐乐发布了新的文献求助10
16秒前
Vivianne发布了新的文献求助10
20秒前
大胆班完成签到,获得积分10
22秒前
乐乐完成签到,获得积分20
23秒前
23秒前
24秒前
Qing完成签到,获得积分10
24秒前
24秒前
Cupid完成签到,获得积分10
26秒前
27秒前
哈哈哈发布了新的文献求助30
27秒前
28秒前
张成协发布了新的文献求助10
29秒前
MMX完成签到,获得积分10
29秒前
zym999999发布了新的文献求助10
30秒前
云岫完成签到 ,获得积分10
30秒前
清秀的靖雁应助清玖采纳,获得10
30秒前
31秒前
32秒前
zhang完成签到,获得积分10
32秒前
36秒前
嵩嵩发布了新的文献求助10
37秒前
mmmmm完成签到,获得积分10
38秒前
诸道罡发布了新的文献求助10
39秒前
cxm666发布了新的文献求助10
39秒前
熊i发布了新的文献求助10
41秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958051
求助须知:如何正确求助?哪些是违规求助? 3504213
关于积分的说明 11117431
捐赠科研通 3235582
什么是DOI,文献DOI怎么找? 1788318
邀请新用户注册赠送积分活动 871204
科研通“疑难数据库(出版商)”最低求助积分说明 802511