A Transformer-Based Approach to Multilingual Fake News Detection in Low-Resource Languages

计算机科学 自然语言处理 人工智能 编码器 学习迁移 变压器 领域(数学分析) 语言模型 可用性 人机交互 数学 量子力学 操作系统 物理 数学分析 电压
作者
Arkadipta De,Dibyanayan Bandyopadhyay,Baban Gain,Asif Ekbal
出处
期刊:ACM Transactions on Asian and Low-Resource Language Information Processing 卷期号:21 (1): 1-20 被引量:34
标识
DOI:10.1145/3472619
摘要

Fake news classification is one of the most interesting problems that has attracted huge attention to the researchers of artificial intelligence, natural language processing, and machine learning (ML). Most of the current works on fake news detection are in the English language, and hence this has limited its widespread usability, especially outside the English literate population. Although there has been a growth in multilingual web content, fake news classification in low-resource languages is still a challenge due to the non-availability of an annotated corpus and tools. This article proposes an effective neural model based on the multilingual Bidirectional Encoder Representations from Transformer (BERT) for domain-agnostic multilingual fake news classification. Large varieties of experiments, including language-specific and domain-specific settings, are conducted. The proposed model achieves high accuracy in domain-specific and domain-agnostic experiments, and it also outperforms the current state-of-the-art models. We perform experiments on zero-shot settings to assess the effectiveness of language-agnostic feature transfer across different languages, showing encouraging results. Cross-domain transfer experiments are also performed to assess language-independent feature transfer of the model. We also offer a multilingual multidomain fake news detection dataset of five languages and seven different domains that could be useful for the research and development in resource-scarce scenarios.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助Bonnienuit采纳,获得50
1秒前
popooo完成签到,获得积分10
1秒前
2秒前
2秒前
sunnyqqz发布了新的文献求助30
2秒前
QLLW应助星辰坠于海采纳,获得10
2秒前
幸运小狗发布了新的文献求助10
2秒前
慕青应助Ao采纳,获得10
3秒前
Lucas应助程天佑采纳,获得10
3秒前
SC30完成签到,获得积分10
4秒前
Akim应助yyanxuemin919采纳,获得10
5秒前
金秋完成签到,获得积分0
6秒前
kyf完成签到 ,获得积分10
6秒前
常彬完成签到,获得积分10
7秒前
xiaoxixiccccc发布了新的文献求助10
8秒前
orixero应助变化是永恒的采纳,获得10
9秒前
9秒前
shxxy123发布了新的文献求助50
9秒前
冷艳的匪发布了新的文献求助10
10秒前
10秒前
仙女完成签到 ,获得积分10
11秒前
行者无疆发布了新的文献求助10
12秒前
Umind发布了新的文献求助10
14秒前
我是老大应助Jodie采纳,获得10
15秒前
安静真完成签到,获得积分10
18秒前
科研通AI6应助风控采纳,获得10
19秒前
fish完成签到,获得积分10
19秒前
19秒前
PORCO完成签到,获得积分10
22秒前
22秒前
蝉鸣一夏完成签到,获得积分10
23秒前
陈一完成签到,获得积分10
24秒前
安静真发布了新的文献求助10
24秒前
qintiantian完成签到,获得积分10
25秒前
26秒前
26秒前
张zhang发布了新的文献求助10
27秒前
Mine发布了新的文献求助30
27秒前
27秒前
whoKnows应助jiujiu采纳,获得20
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560166
求助须知:如何正确求助?哪些是违规求助? 4645315
关于积分的说明 14674844
捐赠科研通 4586430
什么是DOI,文献DOI怎么找? 2516437
邀请新用户注册赠送积分活动 1490066
关于科研通互助平台的介绍 1460870