促炎细胞因子
氧化应激
肺
肺毒性
微粒
医学
毒性
病理
内科学
免疫学
化学
生物
炎症
生态学
作者
Chia-Hsiang Lai,Yi‐Chun Chen,Kun‐Yi Andrew Lin,Yi-Xian Lin,Tsung‐Han Lee,Chia‐Hua Lin
标识
DOI:10.1016/j.scitotenv.2021.151119
摘要
Airborne oil mist particulate matter (OMPM) is generated during industrial processes such as metalworking and may be associated with pulmonary dysfunction. In this study, we employed the normal human bronchial epithelial BEAS-2B cell line to elucidate the association between pulmonary toxicity and OMPM of 2.5-10 μm, 1.0-2.5 μm and <1.0 μm particle sizes (OMPM10-2.5, OMPM2.5-1.0 and OMPM1.0). We measured OMPM concentrations at a precision machinery factory to estimate lung deposition rates and select realistic environmental concentrations for testing. All OMPMs (1-50 μg/cm2) significantly decreased BEAS-2B cell viability (>38% of control), except for low-dose OMPM1.0 (1 μg/cm2). OMPM10-2.5 and OMPM2.5-1.0, but not OMPM1.0, induced oxidative stress (1.5-4-fold increase compared with the control) and increased the production of proinflammatory cytokines (1.5-3-fold). However, only OMPM1.0 induced pulmonary epithelial barrier dysfunction via depletion of zonula occludens (0.65-0.8-fold) and α1-antitrypsin proteins (0.65-0.8-fold). In conclusion, a higher risk of lung disease was associated with smaller particle size OMPM. Exposure to OMPM1.0 may be a potential risk factor for chronic obstructive pulmonary disease. The evidence also demonstrates that occupational exposure to OMPM may cause pulmonary disease at very low concentrations.
科研通智能强力驱动
Strongly Powered by AbleSci AI