记忆电阻器
材料科学
非易失性存储器
纳米技术
逻辑门
神经形态工程学
瞬态(计算机编程)
数码产品
光电子学
计算机科学
电子工程
电气工程
工程类
机器学习
操作系统
人工神经网络
算法
作者
Xiaoning Zhao,Jiaqi Xu,Dan Xie,Zhongqiang Wang,Haiyang Xu,Ya Lin,Junli Hu,Yichun Liu
标识
DOI:10.1002/adma.202104023
摘要
As a leading candidate for further memory and computing applications, memristors are being developed in an important direction of transient electronics. Herein, wafer-scale acidic polysaccharide thin films are reported as promising materials for memristors with remarkable transient characteristics. The memristor shows freestanding and lightweight features, and can be fully dissolved in deionized water within 3.5 s. More importantly, the ion-confinement capability of acidic polysaccharides where the cations can interact with the ionizable acid groups enables atomic manipulation of conductive filament. As a result, (i) a single device can produce 16 highly controllable and independent quantized conductance (QC) states with quasi-nonvolatile and nonvolatile characteristics and (ii) QC switching can be performed with ultrafast speed (2-5 ns) and low energy consumption (0.6-16 pJ). These remarkable features make the memristor promising for fast, low-power, and high-density memory and computing applications. Based on QC switching, the encoding/decoding and nonvolatile basic Boolean logic are designed and implemented. More importantly, "stateful" material implication logic which is promising for future in-memory computing is demonstrated with QC switching. These results significantly advance acidic polysaccharides to develop nanodevices with quantum effects.
科研通智能强力驱动
Strongly Powered by AbleSci AI