已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multiple Imputation with Massive Data: An Application to the Panel Study of Income Dynamics

插补(统计学) 面板数据 计算机科学 计量经济学 收入动态的小组研究 统计 数据挖掘 缺少数据 数学 机器学习
作者
Yajuan Si,Steve Heeringa,David Read Johnson,Roderick J. A. Little,Wenshuo Liu,Fabian T. Pfeffer,Trivellore E. Raghunathan
出处
期刊:Journal of survey statistics and methodology [Oxford University Press]
卷期号:11 (1): 260-283 被引量:11
标识
DOI:10.1093/jssam/smab038
摘要

Abstract Multiple imputation (MI) is a popular and well-established method for handling missing data in multivariate data sets, but its practicality for use in massive and complex data sets has been questioned. One such data set is the Panel Study of Income Dynamics (PSID), a longstanding and extensive survey of household income and wealth in the United States. Missing data for this survey are currently handled using traditional hot deck methods because of the simple implementation; however, the univariate hot deck results in large random wealth fluctuations. MI is effective but faced with operational challenges. We use a sequential regression/chained-equation approach, using the software IVEware, to multiply impute cross-sectional wealth data in the 2013 PSID, and compare analyses of the resulting imputed data with those from the current hot deck approach. Practical difficulties, such as non-normally distributed variables, skip patterns, categorical variables with many levels, and multicollinearity, are described together with our approaches to overcoming them. We evaluate the imputation quality and validity with internal diagnostics and external benchmarking data. MI produces improvements over the existing hot deck approach by helping preserve correlation structures, such as the associations between PSID wealth components and the relationships between the household net worth and sociodemographic factors, and facilitates completed data analyses with general purposes. MI incorporates highly predictive covariates into imputation models and increases efficiency. We recommend the practical implementation of MI and expect greater gains when the fraction of missing information is large.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赶紧毕业发布了新的文献求助10
1秒前
执着沛蓝发布了新的文献求助10
1秒前
随机昵称发布了新的文献求助30
1秒前
12秒前
ll完成签到,获得积分10
12秒前
zwying发布了新的文献求助20
14秒前
14秒前
15秒前
英姑应助a焦采纳,获得10
16秒前
龚薇发布了新的文献求助10
16秒前
小潘完成签到,获得积分10
16秒前
iNk应助曾经寄真采纳,获得20
19秒前
wwwyyy发布了新的文献求助10
20秒前
zy完成签到,获得积分10
23秒前
龚薇完成签到,获得积分20
25秒前
wwwyyy完成签到,获得积分10
27秒前
华仔应助勤奋冬寒采纳,获得10
31秒前
半圭为璋发布了新的文献求助10
31秒前
33秒前
huang完成签到 ,获得积分10
34秒前
38秒前
FashionBoy应助今晚打老虎采纳,获得10
38秒前
CipherSage应助水云身采纳,获得10
39秒前
852应助羽生结弦的馨馨采纳,获得10
40秒前
41秒前
科目三应助英俊冬日采纳,获得10
43秒前
jojo发布了新的文献求助10
44秒前
勤奋冬寒发布了新的文献求助10
45秒前
笑笑发布了新的文献求助10
47秒前
48秒前
强健的迎波完成签到,获得积分10
50秒前
jawa完成签到 ,获得积分10
50秒前
50秒前
矢车菊完成签到 ,获得积分10
52秒前
53秒前
英俊冬日发布了新的文献求助10
55秒前
1分钟前
和谐谷蕊完成签到,获得积分10
1分钟前
schon完成签到 ,获得积分10
1分钟前
妮妮完成签到,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1500
Izeltabart tapatansine - AdisInsight 800
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3773461
求助须知:如何正确求助?哪些是违规求助? 3319034
关于积分的说明 10192728
捐赠科研通 3033648
什么是DOI,文献DOI怎么找? 1664537
邀请新用户注册赠送积分活动 796247
科研通“疑难数据库(出版商)”最低求助积分说明 757361