费斯特共振能量转移
接受者
材料科学
纳米技术
共振(粒子物理)
能量转移
化学物理
能量(信号处理)
生物系统
物理
荧光
光学
原子物理学
凝聚态物理
量子力学
作者
Divita Mathur,Anirban Samanta,Mario G. Ancona,Sebastián Pérez Díaz,Youngchan Kim,Joseph S. Melinger,Ellen R. Goldman,John P. Sadowski,Luvena L. Ong,Peng Yin,Igor L. Medintz
出处
期刊:ACS Nano
[American Chemical Society]
日期:2021-10-05
卷期号:15 (10): 16452-16468
被引量:9
标识
DOI:10.1021/acsnano.1c05871
摘要
Controlling excitonic energy transfer at the molecular level is a key requirement for transitioning nanophotonics research to viable devices with the main inspiration coming from biological light-harvesting antennas that collect and direct light energy with near-unity efficiency using Förster resonance energy transfer (FRET). Among putative FRET processes, point-to-plane FRET between donors and acceptors arrayed in two-dimensional sheets is predicted to be particularly efficient with a theoretical 1/r4 energy transfer distance (r) dependency versus the 1/r6 dependency seen for a single donor-acceptor interaction. However, quantitative validation has been confounded by a lack of robust experimental approaches that can rigidly place dyes in the required nanoscale arrangements. To create such assemblies, we utilize a DNA brick scaffold, referred to as a DNA block, which incorporates up to five two-dimensional planes with each displaying from 1 to 12 copies of five different donor, acceptor, or intermediary relay dyes. Nanostructure characterization along with steady-state and time-resolved spectroscopic data were combined with molecular dynamics modeling and detailed numerical simulations to compare the energy transfer efficiencies observed in the experimental DNA block assemblies to theoretical expectations. Overall, we demonstrate clear signatures of sheet regime FRET, and from this we provide a better understanding of what is needed to realize the benefits of such energy transfer in artificial dye networks along with FRET-based sensing and imaging.
科研通智能强力驱动
Strongly Powered by AbleSci AI