Task-Driven Deep Image Enhancement Network for Autonomous Driving in Bad Weather

计算机科学 任务(项目管理) 感知 恶劣天气 人工智能 深度学习 软件部署 计算机视觉 目标检测 相关性(法律) 薄雾 图像(数学) 视觉感受 实时计算 模式识别(心理学) 工程类 物理 系统工程 神经科学 气象学 法学 政治学 生物 操作系统
作者
Younkwan Lee,Jihyo Jeon,Yeongmin Ko,Byunggwan Jeon,Moongu Jeon
标识
DOI:10.1109/icra48506.2021.9561076
摘要

Visual perception in autonomous driving is a crucial part of a vehicle to navigate safely and sustainably in different traffic conditions. However, in bad weather such as heavy rain and haze, the performance of visual perception is greatly affected by several degrading effects. Recently, deep learning-based perception methods have addressed multiple degrading effects to reflect real-world bad weather cases but have shown limited success due to 1) high computational costs for deployment on mobile devices and 2) poor relevance between image enhancement and visual perception in terms of the model ability. To solve these issues, we propose a task-driven image enhancement network connected to the high-level vision task, which takes in an image corrupted by bad weather as input. Specifically, we introduce a novel low memory network to reduce most of the layer connections of dense blocks for less memory and computational cost while maintaining high performance. We also introduce a new task-driven training strategy to robustly guide the high-level task model suitable for both high-quality restoration of images and highly accurate perception. Experiment results demonstrate that the proposed method improves the performance among lane and 2D object detection, and depth estimation largely under adverse weather in terms of both low memory and accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彬彬完成签到 ,获得积分10
刚刚
刚刚
123应助落叶子采纳,获得20
1秒前
1秒前
1秒前
2秒前
lichanshen完成签到,获得积分10
2秒前
今天你读文献了吗完成签到,获得积分10
2秒前
LiLY完成签到,获得积分10
3秒前
3秒前
Pluto发布了新的文献求助10
3秒前
3秒前
3秒前
子车逍遥发布了新的文献求助10
3秒前
灰太狼发布了新的文献求助20
3秒前
4秒前
Inory007完成签到,获得积分10
4秒前
5秒前
时尚友安完成签到,获得积分10
5秒前
6秒前
丰富的鱼完成签到,获得积分10
6秒前
6秒前
xc完成签到,获得积分10
6秒前
十一完成签到,获得积分10
6秒前
6秒前
Holly完成签到,获得积分10
7秒前
yi0完成签到,获得积分10
7秒前
年轻的逍遥完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
112发布了新的文献求助10
8秒前
无风风发布了新的文献求助10
8秒前
9秒前
完美世界应助Lisiqi采纳,获得10
9秒前
9秒前
zoe发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
孤萧寒月发布了新的文献求助10
9秒前
君无邪发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645714
求助须知:如何正确求助?哪些是违规求助? 4769624
关于积分的说明 15031726
捐赠科研通 4804481
什么是DOI,文献DOI怎么找? 2569019
邀请新用户注册赠送积分活动 1526095
关于科研通互助平台的介绍 1485700