Task-Driven Deep Image Enhancement Network for Autonomous Driving in Bad Weather

计算机科学 任务(项目管理) 感知 恶劣天气 人工智能 深度学习 软件部署 计算机视觉 目标检测 相关性(法律) 薄雾 图像(数学) 视觉感受 实时计算 模式识别(心理学) 工程类 政治学 系统工程 法学 神经科学 气象学 物理 操作系统 生物
作者
Younkwan Lee,Jihyo Jeon,Yeongmin Ko,Byunggwan Jeon,Moongu Jeon
标识
DOI:10.1109/icra48506.2021.9561076
摘要

Visual perception in autonomous driving is a crucial part of a vehicle to navigate safely and sustainably in different traffic conditions. However, in bad weather such as heavy rain and haze, the performance of visual perception is greatly affected by several degrading effects. Recently, deep learning-based perception methods have addressed multiple degrading effects to reflect real-world bad weather cases but have shown limited success due to 1) high computational costs for deployment on mobile devices and 2) poor relevance between image enhancement and visual perception in terms of the model ability. To solve these issues, we propose a task-driven image enhancement network connected to the high-level vision task, which takes in an image corrupted by bad weather as input. Specifically, we introduce a novel low memory network to reduce most of the layer connections of dense blocks for less memory and computational cost while maintaining high performance. We also introduce a new task-driven training strategy to robustly guide the high-level task model suitable for both high-quality restoration of images and highly accurate perception. Experiment results demonstrate that the proposed method improves the performance among lane and 2D object detection, and depth estimation largely under adverse weather in terms of both low memory and accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gyh完成签到,获得积分10
刚刚
在水一方应助甾醇采纳,获得10
刚刚
深情安青应助不想看文献采纳,获得10
刚刚
渣155136发布了新的文献求助10
刚刚
思源应助开朗的小蘑菇采纳,获得10
2秒前
温柔安筠完成签到,获得积分10
2秒前
a怪完成签到,获得积分10
3秒前
彭于晏应助科研通管家采纳,获得10
3秒前
领导范儿应助科研通管家采纳,获得10
3秒前
领导范儿应助科研通管家采纳,获得10
3秒前
bkagyin应助科研通管家采纳,获得10
3秒前
BareBear应助科研通管家采纳,获得10
4秒前
传奇3应助科研通管家采纳,获得10
4秒前
SciGPT应助科研通管家采纳,获得10
4秒前
CodeCraft应助科研通管家采纳,获得10
4秒前
pcr163应助科研通管家采纳,获得200
4秒前
敏感草丛应助科研通管家采纳,获得10
4秒前
Akim应助科研通管家采纳,获得10
4秒前
大模型应助科研通管家采纳,获得10
4秒前
4秒前
汉堡包应助科研通管家采纳,获得10
4秒前
BareBear应助科研通管家采纳,获得10
4秒前
4秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
英俊的铭应助Anqing采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
枫叶发布了新的文献求助10
5秒前
渣155136完成签到,获得积分20
5秒前
汉堡包应助yuan采纳,获得10
5秒前
OK发布了新的文献求助10
5秒前
mikiisme完成签到,获得积分10
5秒前
飘逸鞋子完成签到,获得积分10
6秒前
7秒前
愿学的都会完成签到,获得积分10
8秒前
mikiisme发布了新的文献求助30
8秒前
科研通AI2S应助百鳴采纳,获得10
9秒前
灰灰完成签到,获得积分10
10秒前
不想看文献完成签到 ,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5460749
求助须知:如何正确求助?哪些是违规求助? 4565886
关于积分的说明 14301627
捐赠科研通 4491349
什么是DOI,文献DOI怎么找? 2460286
邀请新用户注册赠送积分活动 1449633
关于科研通互助平台的介绍 1425474