Task-Driven Deep Image Enhancement Network for Autonomous Driving in Bad Weather

计算机科学 任务(项目管理) 感知 恶劣天气 人工智能 深度学习 软件部署 计算机视觉 目标检测 相关性(法律) 薄雾 图像(数学) 视觉感受 实时计算 模式识别(心理学) 工程类 政治学 系统工程 法学 神经科学 气象学 物理 操作系统 生物
作者
Younkwan Lee,Jihyo Jeon,Yeongmin Ko,Byunggwan Jeon,Moongu Jeon
标识
DOI:10.1109/icra48506.2021.9561076
摘要

Visual perception in autonomous driving is a crucial part of a vehicle to navigate safely and sustainably in different traffic conditions. However, in bad weather such as heavy rain and haze, the performance of visual perception is greatly affected by several degrading effects. Recently, deep learning-based perception methods have addressed multiple degrading effects to reflect real-world bad weather cases but have shown limited success due to 1) high computational costs for deployment on mobile devices and 2) poor relevance between image enhancement and visual perception in terms of the model ability. To solve these issues, we propose a task-driven image enhancement network connected to the high-level vision task, which takes in an image corrupted by bad weather as input. Specifically, we introduce a novel low memory network to reduce most of the layer connections of dense blocks for less memory and computational cost while maintaining high performance. We also introduce a new task-driven training strategy to robustly guide the high-level task model suitable for both high-quality restoration of images and highly accurate perception. Experiment results demonstrate that the proposed method improves the performance among lane and 2D object detection, and depth estimation largely under adverse weather in terms of both low memory and accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
秋秋发布了新的文献求助10
刚刚
1111发布了新的文献求助20
刚刚
喜悦凝冬完成签到,获得积分10
1秒前
1秒前
2秒前
于涵艺完成签到,获得积分20
2秒前
量子星尘发布了新的文献求助10
2秒前
风继续吹发布了新的文献求助10
3秒前
3秒前
Nimnse发布了新的文献求助10
4秒前
4秒前
5秒前
SciGPT应助倚栏听风采纳,获得10
5秒前
Orange应助科研通管家采纳,获得30
6秒前
汉堡包应助科研通管家采纳,获得10
6秒前
ttt发布了新的文献求助10
6秒前
寻道图强应助科研通管家采纳,获得30
6秒前
天天快乐应助科研通管家采纳,获得10
6秒前
斯文败类应助科研通管家采纳,获得10
6秒前
打打应助科研通管家采纳,获得10
6秒前
我是老大应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
科目三应助科研通管家采纳,获得10
6秒前
李爱国应助科研通管家采纳,获得10
7秒前
深情安青应助科研通管家采纳,获得10
7秒前
7秒前
Mic应助科研通管家采纳,获得10
7秒前
yzy应助科研通管家采纳,获得10
7秒前
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
Mic应助科研通管家采纳,获得10
7秒前
7秒前
yifan92完成签到,获得积分10
7秒前
星辰大海应助科研通管家采纳,获得10
7秒前
无花果应助科研通管家采纳,获得10
8秒前
Frank应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
Mic应助科研通管家采纳,获得10
8秒前
无极微光应助科研通管家采纳,获得20
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5531325
求助须知:如何正确求助?哪些是违规求助? 4620210
关于积分的说明 14572130
捐赠科研通 4559739
什么是DOI,文献DOI怎么找? 2498562
邀请新用户注册赠送积分活动 1478528
关于科研通互助平台的介绍 1449968