核医学
医学
放射治疗计划
放射治疗
剂量学
成像体模
放射外科
放射科
作者
Shekhar Dwivedi,Sandeep Kansal,Jooli Shukla,Avinav Bharati,Vinod Kumar Dangwal
出处
期刊:Biomedical Physics & Engineering Express
[IOP Publishing]
日期:2021-10-13
卷期号:7 (6): 065037-065037
被引量:6
标识
DOI:10.1088/2057-1976/ac2f0d
摘要
This study aimed to dosimetrically compare and evaluate the flattening filter-free (FFF) photon beam-based three-dimensional conformal radiotherapy (3DCRT), intensity-modulated radiation therapy (IMRT), and volumetric modulated arc therapy (VMAT) for lung stereotactic body radiotherapy (SBRT). RANDO phantom computed tomography (CT) images were used for treatment planning. Gross tumor volumes (GTVs) were delineated in the central and peripheral lung locations. Planning target volumes (PTVs) was determined by adding a 5 mm margin to the GTV. 3DCRT, IMRT, and VMAT plans were generated using a 6-MV FFF photon beam. Dose calculations for all plans were performed using the anisotropic analytical algorithm (AAA) and Acuros XB algorithms. The accuracy of the algorithms was validated using the dose measured in a CIRS thorax phantom. The conformity index (CI), high dose volume (HDV), low dose location (D2cm), and homogeneity index (HI) improved with FFF-VMAT compared to FFF-IMRT and FFF-3DCRT, while low dose volume (R50%) and gradient index (GI) showed improvement with FFF-3DCRT. Compared with FFF-3DCRT, a drastic decrease in the mean treatment time (TT) value was observed with FFF-VMAT for different lung sites between 57.09% and 60.39%, while with FFF-IMRT it increased between 10.78% and 17.49%. The dose calculation with Acuros XB was found to be superior to that of AAA. Based on the comparison of dosimetric indices in this study, FFF-VMAT provides a superior treatment plan to FFF-IMRT and FFF-3DCRT in the treatment of peripheral and central lung PTVs. This study suggests that Acuros XB is a more accurate algorithm than AAA in the lung region.
科研通智能强力驱动
Strongly Powered by AbleSci AI